
CutSplit: A Decision-Tree Combining Cutting and

Splitting for Scalable Packet Classification

Wenjun Li†, Xianfeng Li†, Hui Li† and Gaogang Xie‡

†School of Electronic and Computer Engineering, Peking University
‡Institute of Computing Technology, Chinese Academy of Sciences

IEEE INFOCOM

Honolulu, HI, April 15-19, 2018

 Background

 Challenge Review

 Proposed CutSplit

 Evaluation

 Conclusion

Outline

School of Electronic and Computer Engineering, Peking University

School of Electronic and Computer Engineering, Peking University

 Key for policy enforcement in packet forwarding

 Firewall, QoS, OpenFlow, P4, etc.

Multi-field Packet Classification

Forwarding Engine

Header

Classifier (Rule Database)

Predicate Action

Incoming Packet

Payload

Fibre Optics Fibre Optics

Router / Firewall

Header

Outgoing Packet

Payload

Flow Classification

An example OpenFlow 1.0 classifier/flow table (12-tuple) Action

r1

Ingress

Port

Ether

src

Ether

dst

Ether

type

VLAN

id

VLAN

priority

Action1

3 * * 2048 * *

IP

src

IP

dst

IP

proto

IP

ToS bits

TCP/UDP

Src Port

TCP/UDP

Dst Port

15.25.70.8/30 18.15.125.3/28 0x11/0xff 1 1024 : 65535 80
…

School of Electronic and Computer Engineering, Peking University

Previous Works & Key Metrics

 Taxonomy of previous packet classifications

 Algorithmic: Desired but speed/memory inefficient

 Architectural: Fast but expensive, power hungry, poor

scalability and suffer from range expansion

 Key metrics of scalable packet classification

 Low memory consumption

 Low memory accesses

 Bounded worst-case performance

 Low pre-processing time

 Low incremental update time

 Our proposed algorithm: CutSplit

 A decision-tree based algorithmic approach

School of Electronic and Computer Engineering, Peking University

A Little Review on Decision-trees

 Decision-tree construction in packet classification

 1. Rule table matching ↔ Point location in geometric space

 2. Partition the searching space into sub-spaces recursively
➢ Root node: Whole searching space containing all rules

➢ Internal node: #rule covered by sub-space > a predefined number of rules

➢ Leaf node: #rule covered by sub-space <= a predefined number of rules

R2 R1R6

0000 1111

0000

1111

R5

R4

R3

Field X

Fi
el

d
 Y

Rule # Field X Field Y Action

R1 111* * A1

R2 110* * A2

R3 * 010* A3

R4 * 011* A4

R5 01** 10** A5

R6 * * A6

Leaf 2
R3,R4,R5,R6

Leaf 4
R2,R3,R4,R6

Cut-X:4

Leaf 3
R3,R4,R6

Leaf 1
R3,R4,R6

Leaf 5
R1,R3,R4,R6

Cut-X:2

 Two major threads of building decision-trees

 Equal-sized cutting & Equal-dense splitting

HiCuts-4

School of Electronic and Computer Engineering, Peking University

Two Major Threads in Decision-trees

 Equal-sized cutting based decision-trees

 Separate the searching space into many equal-sized sub-spaces

 e.g., HiCuts, HyperCuts, EffiCuts, HybridCuts, etc.

 Equal-dense splitting based decision-trees

 Unequal-sized sub-spaces containing nearly equal number of rules

 e.g., HyperSplit, ParaSplit, SmartSplit, etc.

Split-X
13

Split-Y
5

X <= 13

Split-Y
5

X > 13

Y <= 5 Y > 5 Y <= 5 Y > 5

Leaf 1
R2,R3,

R6

Leaf 2
R2,R4,
R5,R6

Leaf 3
R1,R3,

R6

Leaf 4
R1,R4,

R6

HiCuts-4 HyperSplit-4

R2 R1R6

0000 1111

0000

1111

R5

R4

R3

Field X

Fi
el

d
 Y

13

5

Leaf 2
R3,R4,R5,R6

Leaf 4
R2,R3,R4,R6

Cut-X:4

Leaf 3
R3,R4,R6

Leaf 1
R3,R4,R6

Leaf 5
R1,R3,R4,R6

Cut-X:2

School of Electronic and Computer Engineering, Peking University

Why Yet Another Decision-tree?

A well established problem

Well established solutions

without

 Background

 Challenge Review

 Proposed CutSplit

 Evaluation

 Conclusion

Outline

School of Electronic and Computer Engineering, Peking University

Review & Analysis on Challenges

School of Electronic and Computer Engineering, Peking University

 Rule replication: Main trouble-maker for decision-trees

 In case a rule spans multiple sub-spaces/nodes in decision-tree,

rule replication happens, which is an undesirable case.

 More insights on rule replication

 Rule replication factor: #stored rules / rule set size

1

10

100

1000

10000

HyperCuts-8, pushup=0 HyperSplit-8

HiCuts-4

Rule replication factor:

(3+4+3+4+4)/6=3
Evaluation of rule replication factor for different rule sets

R2 R1R6

0000 1111

0000

1111

R5

R4

R3

Field X

Fi
el

d
 Y

Leaf 2
R3,R4,R5,R6

Leaf 4
R2,R3,R4,R6

Cut-X:4

Leaf 3
R3,R4,R6

Leaf 1
R3,R4,R6

Leaf 5
R1,R3,R4,R6

Cut-X:2

Review & Analysis on Prior Art

School of Electronic and Computer Engineering, Peking University

 Recent efforts: Effectiveness & Influence

 Optimization methods
➢ pushing-upwards

➢ rule overlap

➢ region compaction, etc.

Effectiveness of pushing-upwards for

HyperCuts-8

Influence of pushing-upwards for HyperCuts-8

Cut-X:2
Cut-Y:2

Cut-X:4
Cut-Y:2

Leaf 1
R3,R4

Leaf 2
R5

Leaf 3
R1,R2

Pushup: R6

Leaf 4
R2

Leaf 5
R1

Leaf 6
R3,R4

Leaf 7
R3,R4

Leaf 8
R2(R3&4)

Leaf 9
R1(R3&4)

R2 R1R6

0000 1111

0000

1111

R5

R4

R3

Field X

Fi
el

d
 Y

HyperCuts-2

Review & Analysis on Prior Art

School of Electronic and Computer Engineering, Peking University

 Recent efforts: Effectiveness & Influence

 Optimization methods

 Rule set partitioning
➢ all field based: EffiCuts

➢ single field based: HybridCuts

➢ IP address based: SmartSplit 1

10

100

1000

10000

seed-acl (752 rules) seed-fw (269 rules) seed-ipc (1550 rules)

HyperCut_MC EffiCuts_MC HyperCut_RRF EffiCuts_RRF

MC: Memory Consumption (Byte/rule)
RRF: Rule Replication Factor

0

20

40

60

80

100

120

140

160

seed-acl (752 rules) seed-fw (269 rules) seed-ipc (1550 rules)

HyperCuts_MA EffiCuts_MA

#sub-tree: Number of sub-trees after merging in EffiCuts

#sub-tree=5

#sub-tree=8

#sub-tree=9

MA: Number of overall memory access

Effectiveness of rule set partitioning for EffiCuts-8

Influence of rule set partitioning for EffiCuts-8

A

B

C

D

E

F

E

A

F

B

C

D

G

G

EffiCuts: 2F sub-sets

Review & Analysis on Prior Art

School of Electronic and Computer Engineering, Peking University

 Recent efforts: Effectiveness & Influence

 Optimization methods

 Rule set partitioning

 Cutting or Splitting?

➢ EffiCuts: HyperCuts + Equi-dense cutting option (i.e., splitting)

➢ HybridCuts: One- + multi-dimensional cuttings (i.e., HyperCuts)

➢ SmartSplit: {HyperCuts, HyperSplit} based on memory estimator

 However, the performance of these algorithms drop quickly with

the size of rule sets increases: Poor scalability of HyperCuts &

HyperSplit

Thus, these efforts reduce rule replications while

sacrificing search or update performance!

Better Solutions?

School of Electronic and Computer Engineering, Peking University

No optimization method

(with better search & update performance)

More scalable rule set partitioning

(with less rule groups)

+

Better combination of Cutting & Splitting

(by exploiting characteristics)

+

 Background

 Challenge Review

 Proposed CutSplit

 Evaluation

 Conclusion

Outline

School of Electronic and Computer Engineering, Peking University

Ideas & Framework

School of Electronic and Computer Engineering, Peking University

root node

smaller sub-
space i with
fewer rules

Pre-Cutting

leaf nodes

Post-Splitting

smaller sub-
space n with
fewer rules

smaller sub-
space 1 with
fewer rules

leaf nodes

Post-Splitting

leaf nodes

Post-Splitting

... ...

➢ Cutting can separate searching

space into smaller sub-spaces

quickly for faster classification

➢ Splitting can significantly reduce rule

replications and offer a bounded worst-

case search performance for small rule sets

To foster the strengths and circumvent the weaknesses of cutting and

splitting, the idea directly perceived is to combine the following two

strategies: Faster Pre-Cutting & Explicit Post-Splitting

The framework of CutSplit

More details & Challenges

School of Electronic and Computer Engineering, Peking University

O
rigin

al R
u

le set

..
.

..
.

2nd Sub-set

ith Sub-set

Kth Sub-set

1st Stage:
Partitioning

Pre-Cutting Post-Splitting

Pre-Cutting Post-Splitting

Pre-Cutting Post-Splitting

2nd Stage:
Decision-Tree Construction

Few big rules HyperSplit

 Preprocessing & Constructing search structure

Fewer sub-sets

(Not only for 5-tuple)

No/Fewer rule replication

No optimization in cuttings

Observations (1)

School of Electronic and Computer Engineering, Peking University

 At Least One Small Field

The ratio of big rules for seed-acl rule set

Observations (1)

School of Electronic and Computer Engineering, Peking University

 At Least One Small Field

The ratio of big rules for seed-fw rule set

Observations (1)

School of Electronic and Computer Engineering, Peking University

 At Least One Small Field

The ratio of big rules for seed-ipc rule set

Observations (2)

School of Electronic and Computer Engineering, Peking University

 Very Few Small Fields

Table. Statistical results for 5-tuple & OpenFlow-like rules (Assuming the value

of Ti is half of range length in field Fi)

*The two OpenFlow-like rule tables are generated by Tsinghua University,

which are based on 216 real-life rules from enterprise customers. We are very

grateful to Pro. Jun Li for his selflessness help in this evaluation.

*

*

Mahalo

Scalable Partitioning

School of Electronic and Computer Engineering, Peking University

 Step 1: Remove very few big rules

 HyperSplit for these rules

 Step 2: Select a few distinct fields

 Top-k significant small fields (e.g., >95% rules included)

 Remove remaining rules to big rules in Step 1

 Step 3: Fields-wise partitioning

 M fields selected for F-tuple rule sets 2M-1 sub-sets

 Step 4: Selective subset merging

 Sub-set with very few rules Sub-set with fewer small fields

 When to switch to Post-Splitting?

 Achieving threshold value No rule replication in cutting stage

Decision-Tree Constructions

School of Electronic and Computer Engineering, Peking University

root node

smaller sub-
space i with
fewer rules

Pre-Cutting

leaf nodes

Post-Splitting

smaller sub-
space n with
fewer rules

smaller sub-
space 1 with
fewer rules

leaf nodes

Post-Splitting

leaf nodes

Post-Splitting

... ...

rule replications

 CutSplit: Pre-Cutting + Post-Splitting

 Pre-Cutting on small fields

➢ Simpler & More efficiently No optimization (e.g., FiCuts)

 Post-Splitting on small sub-sets after cuttings

 Background

 Challenge Review

 Proposed CutSplit

 Evaluation

 Conclusion

Outline

School of Electronic and Computer Engineering, Peking University

Experimental Setup

School of Electronic and Computer Engineering, Peking University

 Tested with
 Publicly available rule sets from Washington University
 Used the ACL & FW & IPC 100, 1K, 5K, 10K

 ClassBench
 Generate ACL & FW & IPC 100K

 Compared with
 Cutting based: HyperCuts, EffiCuts and HybridCuts
 Splitting based: HyperSplit and SmartSplit

 Primary metrics
 Memory consumption (Decision-tree data structure)
 Memory accesses
 Pre-processing time: decision-tree & sub-trees

Many thanks to authors of HyperCuts & HyperSplit & EffiCuts for their

selflessness help (source codes) in evaluations. As a response, our implementation

of CutSplit is publicly available in http://wenjunli.com/CutSplit/

Mahalo

Memory Consumption

School of Electronic and Computer Engineering, Peking University

1

10

100

1000

10000

ACL_100 ACL_1K ACL_5K ACL_10K FW_100 FW_1K FW_5K FW_10K IPC_100 IPC_1K IPC_5K IPC_10K

HyperCuts HyperSplit EffiCuts HybridCuts SmartSplit CutSplit

binth=8, T'(sa,da)=(16,16)

0

5

10

15

20

25

A
C

L1
_

1
0

0
K

A
C

L2
_

1
0

0
K

A
C

L3
_

1
0

0
K

A
C

L4
_

1
0

0
K

A
C

L5
_

1
0

0
K

FW
1

_
1

0
0

K

FW
2

_
1

0
0

K

FW
3

_
1

0
0

K

FW
4

_
1

0
0

K

FW
5

_
1

0
0

K

IP
C

1
_

1
0

0
K

IP
C

2
_

1
0

0
K

EffiCuts HybridCuts SmartSplit CutSplit

binth=8, T'(sa,da)=(16,16)MB

Byte/rule

Memory Accesses

School of Electronic and Computer Engineering, Peking University

0

20

40

60

80

100

120

ACL_100 ACL_1K ACL_5K ACL_10K FW_100 FW_1K FW_5K FW_10K IPC_100 IPC_1K IPC_5K IPC_10K

HyperCuts HyperSplit EffiCuts HybridCuts SmartSplit CutSplit

binth=8, T'(sa,da)=(16,16)

0

20

40

60

80

100

120

140

A
C

L1
_

1
0

0
K

A
C

L2
_

1
0

0
K

A
C

L3
_

1
0

0
K

A
C

L4
_

1
0

0
K

A
C

L5
_

1
0

0
K

FW
1

_
1

0
0

K

FW
2

_
1

0
0

K

FW
3

_
1

0
0

K

FW
4

_
1

0
0

K

FW
5

_
1

0
0

K

IP
C

1
_

1
0

0
K

IP
C

2
_

1
0

0
K

EffiCuts HybridCuts SmartSplit CutSplit

binth=8, T'(sa,da)=(16,16)

Pre-processing time: Decision-Tree

School of Electronic and Computer Engineering, Peking University

Pre-processing time: Sub-trees

School of Electronic and Computer Engineering, Peking University

 Background

 Challenge Review

 Proposed CutSplit

 Evaluation

 Conclusion

Outline

School of Electronic and Computer Engineering, Peking University

Conclusion

CutSplit:
 In-depth challenge review

 Novel observations

 Scalable partitioning

 Pre-Cutting & Post-Splitting

Future Works
 Determinacy on performance

 Software-hardware combined, e.g., FPGA

 Combine with TSS, TCAM, etc.

School of Electronic and Computer Engineering, Peking University

Web: http://www.wenjunli.com

E-mail: wenjunli@pku.edu.cn

Thank you！

School of Electronic and Computer Engineering, Peking University

http://www.wenjunli.com/
mailto:wenjunli@pku.edu.cn

