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 Key for policy enforcement in packet forwarding

 Firewall, QoS, OpenFlow, P4, etc.
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Previous Works & Key Metrics

 Taxonomy of previous packet classifications

 Algorithmic: Desired but speed/memory inefficient

 Architectural: Fast but expensive, power hungry, poor 

scalability and suffer from range expansion

 Key metrics of scalable packet classification 

 Low memory consumption

 Low memory accesses

 Bounded worst-case performance

 Low pre-processing time

 Low incremental update time

 Our proposed algorithm: CutSplit

 A decision-tree based algorithmic approach
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A Little Review on Decision-trees

 Decision-tree construction in packet classification

 1. Rule table matching ↔ Point location in geometric space

 2. Partition the searching space into sub-spaces recursively
➢ Root node: Whole searching space containing all rules

➢ Internal node: #rule covered by sub-space > a predefined number of rules

➢ Leaf node: #rule covered by sub-space <= a predefined number of rules
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 Two major threads of building decision-trees

 Equal-sized cutting &  Equal-dense splitting

HiCuts-4 
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Two Major Threads in Decision-trees

 Equal-sized cutting based decision-trees 

 Separate the searching space into many equal-sized sub-spaces

 e.g., HiCuts, HyperCuts, EffiCuts, HybridCuts, etc. 

 Equal-dense splitting based decision-trees 

 Unequal-sized sub-spaces containing nearly equal number of rules

 e.g., HyperSplit, ParaSplit, SmartSplit, etc. 
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Why Yet Another Decision-tree? 

A well established problem

Well established solutions

without
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Review & Analysis on Challenges
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 Rule replication: Main trouble-maker for decision-trees

 In case a rule spans multiple sub-spaces/nodes in decision-tree,

rule replication happens, which is an undesirable case.

 More insights on rule replication

 Rule replication factor: #stored rules / rule set size
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(3+4+3+4+4)/6=3
Evaluation of rule replication factor for different rule sets
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Review & Analysis on Prior Art
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 Recent efforts: Effectiveness & Influence 

 Optimization methods
➢ pushing-upwards

➢ rule overlap

➢ region compaction, etc.

Effectiveness of pushing-upwards for 

HyperCuts-8

Influence of pushing-upwards for HyperCuts-8
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Review & Analysis on Prior Art
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 Recent efforts: Effectiveness & Influence 

 Optimization methods

 Rule set partitioning
➢ all field based: EffiCuts

➢ single field based: HybridCuts

➢ IP address based: SmartSplit 1
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Review & Analysis on Prior Art
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 Recent efforts: Effectiveness & Influence 

 Optimization methods

 Rule set partitioning

 Cutting or Splitting?

➢ EffiCuts: HyperCuts + Equi-dense cutting option (i.e., splitting)

➢ HybridCuts: One- + multi-dimensional cuttings (i.e., HyperCuts)

➢ SmartSplit: {HyperCuts, HyperSplit} based on memory estimator

 However, the performance of these algorithms drop quickly with 

the size of rule sets increases: Poor scalability of HyperCuts & 

HyperSplit

Thus, these efforts reduce rule replications while 

sacrificing search or update performance!



Better Solutions?
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No optimization method 

(with better search & update performance)

More scalable rule set partitioning 

(with less rule groups)

+

Better combination of Cutting & Splitting 

(by exploiting characteristics)

+
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Ideas & Framework
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root node 
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... ...

➢ Cutting can separate searching 

space into smaller sub-spaces 

quickly for faster classification

➢ Splitting can significantly reduce rule 

replications and offer a bounded worst-

case search performance for small rule sets

To foster the strengths and circumvent the weaknesses of cutting and 

splitting, the idea directly perceived is to combine the following two 

strategies: Faster Pre-Cutting & Explicit Post-Splitting

The framework of CutSplit



More details & Challenges
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 Preprocessing & Constructing search structure
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(Not only for 5-tuple)
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No optimization in cuttings 



Observations (1)
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 At Least One Small Field

The ratio of big rules for seed-acl rule set



Observations (1)
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 At Least One Small Field

The ratio of big rules for seed-fw rule set



Observations (1)

School of Electronic and Computer Engineering, Peking University

 At Least One Small Field

The ratio of big rules for seed-ipc rule set



Observations (2)
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 Very Few Small Fields

Table. Statistical results for 5-tuple & OpenFlow-like rules (Assuming the value 

of Ti is half of range length in field Fi)

*The two OpenFlow-like rule tables are generated by Tsinghua University, 

which are based on 216 real-life rules from enterprise customers. We are very 

grateful to Pro. Jun Li for his selflessness help in this evaluation. 

*

*

Mahalo



Scalable Partitioning
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 Step 1: Remove very few big rules 

 HyperSplit for these rules

 Step 2: Select a few distinct fields

 Top-k significant small fields (e.g., >95% rules included)

 Remove remaining rules to big rules in Step 1

 Step 3: Fields-wise partitioning

 M fields selected for F-tuple rule sets  2M-1 sub-sets 

 Step 4: Selective subset merging

 Sub-set with very few rules  Sub-set with fewer small fields



 When to switch to Post-Splitting?

 Achieving threshold value  No rule replication in cutting stage

Decision-Tree Constructions
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root node 
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space i with 
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space n with 
fewer rules

smaller sub-
space 1 with 
fewer rules

leaf nodes

Post-Splitting

leaf nodes

Post-Splitting

... ...

rule replications

 CutSplit: Pre-Cutting + Post-Splitting

 Pre-Cutting on small fields 

➢ Simpler & More efficiently  No optimization (e.g., FiCuts)

 Post-Splitting on small sub-sets after cuttings
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Experimental Setup
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 Tested with
 Publicly available rule sets from Washington University
 Used the ACL & FW & IPC 100, 1K, 5K, 10K

 ClassBench
 Generate ACL & FW & IPC 100K

 Compared with
 Cutting based: HyperCuts, EffiCuts and HybridCuts
 Splitting based: HyperSplit and SmartSplit

 Primary metrics
 Memory consumption (Decision-tree data structure)
 Memory accesses 
 Pre-processing time: decision-tree & sub-trees

Many thanks to authors of HyperCuts & HyperSplit & EffiCuts for their 

selflessness help (source codes ) in  evaluations. As a response, our implementation 

of CutSplit is publicly available in http://wenjunli.com/CutSplit/

Mahalo



Memory Consumption
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Memory Accesses
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Pre-processing time: Decision-Tree
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Pre-processing time: Sub-trees
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Conclusion

CutSplit:
 In-depth challenge review

 Novel observations

 Scalable partitioning

 Pre-Cutting & Post-Splitting

Future Works
 Determinacy on performance

 Software-hardware combined, e.g., FPGA

 Combine with TSS, TCAM, etc.
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Web: http://www.wenjunli.com

E-mail: wenjunli@pku.edu.cn

Thank you！
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