
CutSplit: A Decision-Tree Combining Cutting and 

Splitting for Scalable Packet Classification   
 

Wenjun Li†, Xianfeng Li†, Hui Li†* and Gaogang Xie§ 
†School of Electronic and Computer Engineering, Peking University, China, §ICT, CAS, China 

wenjunli@pku.edu.cn, lixianfeng@pkusz.edu.cn, lih64@pku.edu.cn, xie@ict.ac.cn 
 

 

Abstract—Efficient algorithmic solutions for multi-field 

packet classification have been a challenging problem for many 

years. This problem is becoming even worse in the era of 

Software Defined Network (SDN), where flow tables with 

increasing complexities are playing a central role in the 

forwarding plane of SDN. In this paper, we first conduct an 

unprecedented in-depth reasoning on issues that led to the 

unsuccess of the major quests for scalable algorithmic solutions. 

With the insights obtained, we propose a practical framework 

called CutSplit, which can exploit the benefits of cutting and 

splitting techniques adaptively. By addressing the central 

problem caused by uncontrollable rule replications suffered by 

the major efforts, CutSplit not only pushes the performance of 

algorithmic packet classification more closely to hardware-based 

solutions, but also reduces the memory consumption to a 

practical level. Moreover, our work achieves low pre-processing 

time for rule updates, a problem that has long been ignored by 

previous decision-trees, but is becoming more relevant in the 

context of SDN due to frequent updates of rules. Experimental 

results show that using ClassBench, CutSplit achieves a memory 

reduction over 10 times, as well as 3x improvement on 

performance in terms of the number of memory access on 

average. 

Keywords—Packet Classification; OpenFlow; Decision Tree; 

Algorithm; Firewall 

I.  INTRODUCTION  

Modern network devices provide services beyond basic 
packet forwarding, such as security, policy routing and Quality 
of Service (QoS). Packet classification is the core functionality 
for supporting these services. The purpose of packet 
classification is to find a matching rule from a packet classifier 
for each incoming packet, and apply a corresponding action to 
the packet. A packet classifier is a set of rules, with each rule 
consisting of a tuple of field values (exact value, prefix or 
range) and an action to be taken in case of a matching. An 
example 12-tuple OpenFlow [1] classifier is shown in Table I. 
As the bottleneck of advanced forwarding, packet classification 
has attracted research attentions for almost two decades. 

Current packet classifications can be categorized broadly 
into two major approaches: architectural and algorithmic 
[2][3][4]. Architectural approaches based on Ternary Content 
Addressable Memory (TCAM) have been the dominated 

implementation of packet classification in industry. Although 
TCAM enables parallel lookups on rules for line-speed 
classification, it is expensive, area-inefficient and power-
hungry, which seriously limit its scalability. During the past 
decade, a lot methods and algorithms had been proposed to 
alleviate these problems, such as classifier minimization 
[5][6][7][8], range encoding [9][10][11][12][13], circuit 
modification [13][14] and pre-classifier [15][16]. However, 
due to inherent limitations of TCAM, the TCAM capacity is 
not expected to increase significantly in the near future [4]. 
Worse still, with the deployment of SDN/NFV based 
applications, the number of rule fields and size of classifiers are 
increasing dramatically, outpacing the TCAM capacity 
evolution. For example, current OpenFlow Switch examines 
more than 15 fields to categorize packets into different flows, 
and this number is expected to grow in the future [17]. Thus, 
multi-field packet classification has become even more 
prominent and challenging than ever. 

Recently, researchers have been actively investigating less 
expensive, more energy-efficient and more scalable algorithmic 
alternatives to TCAM-based hardware solutions, such as hash-
based algorithms [17][36][39], hardware-assisted schemes 
[19][20][21][37] and decision-tree techniques [18][22][24][25]. 
Among them, decision-tree has been recognized as one of the 
most promising approaches, since they can be well applied to 
rules with more fields and pipelined for high classification 
throughput [26]. In general, there have been two major threads 
of research building decision-trees: equal-sized cutting and 
equal-dense splitting.  Cutting based schemes, such as HiCuts 
[27] and HyperCuts [28], separate the searching space into 
many equal-sized sub-spaces using local optimizations. But 
both schemes have the same rule replication problems, 
especially for large rule sets. EffiCuts [22], a well-known 
cutting scheme, significantly reduces memory overhead of 
previous cutting algorithms by separating rules into at most 2F 
subsets for F-tuple classifiers. As an improvement, HybridCuts 
[24] achieves a significant reduction on the number of subsets, 
which in turn reduces the overall memory accesses. In contrast, 
HyperSplit [29], a well-known splitting scheme, splits the 
searching space into two unequal-sized sub-spaces that contain 
nearly equal number of rules. To achieve better scalability for 
different rule sets, SmartSplit [25] separates rules into a few 
subsets to build balanced trees dynamically. However, as far as 
we know, seldom of these state-of-the-art approaches can make 
an excellent trade-off among storage, performance and 
updating, which seriously limit their scalability.  

In this paper, we first seek to understand the reasons behind 
the difficulty in designing scalable decision-trees for multi-
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field packet classification. After that, we make some novel 
observations on typical 5-tuple rule sets as well as OpenFlow 
based rule tables, which can help us separate rules into few 
subsets. Finally, we present our proposed CutSplit, a decision-
tree scheme combing cutting and splitting for packet 
classification, which can improve storage efficiency and 
performance simultaneously. Moreover, our work achieves low 
pre-processing time for rule updates, a problem that has long 
been ignored by most previous decision-trees. 

We evaluate our algorithm using ClassBench [30] and 
show that, even for rule sets up to 100K entries, CutSplit is 
able to produce a very small number of short decision trees 
with low memory overhead. Compared with EffiCuts, CutSplit 
achieves a memory reduction over 10 times, as well as 3x 
improvement on performance in terms of the number of 
memory access on average. Moreover, CutSplit can rebuild 
decision-trees in a few seconds as well as sub-trees in 50us on 
average. 

The rest of the paper is organized as follows. In Section II, 
we first briefly summarize the related work. After that, we 
review and analyze reasons behind the difficulty in designing 
scalable decision-trees in Section III. Based on these analyses, 
we make a set of important observations and present the 
technical details of CutSplit in Section IV. Section V provides 
experimental results. Finally, Section VI draws conclusion.  

II. BACKGROUND AND RELATED WORK 

In this section, we first review the background about 
decision-tree based packet classification and two major threads 
of research on decision-tree constructions. After that, we 
briefly describe the related work and recent efforts in threads of 
cutting and splitting respectively.  

A. Decision-tree based Packet Classification 

Decision-tree is one of the most wildly studied algorithmic 
approaches, as well as decomposition [31][32][33][34] and 
tuple space [17][35][36]. In decision-tree based schemes, the 
geometric view of the packet classification problem is taken 
and a decision tree is built. The root node of the tree covers the 
whole searching space containing all rules. Each rule is 
considered as a hypercube in an F-dimensional space, where F 
is the number of fields in a rule. Each incoming packet defines 
a point in this F-dimensional space. They work by recursively 
partitioning the searching space into smaller sub-spaces until a 
predefined number of rules are contained by each sub-space. In 
case a rule spans multiple sub-spaces, rule replication happens, 
which is an undesirable case (e.g., R3, R4 and R6 in Figure 1b). 
When a packet arrives, the decision tree is traversed to find a 
matching rule at a leaf node. According to the partitioning 
method on searching space, current decision-tree based 
techniques can be categorized broadly into two major 
approaches: equal-sized cutting and equal-dense splitting. 

 Next, we briefly summarize the related work and some 
recent efforts. For the convenience of description, we use a 
small example of 2-tuple rule set shown in Table II for 
subsequent discussions. Figure 1a shows the geometric 
representation of example rules given in Table II. 

B. Cutting based Decision-trees 

Cutting based schemes, such as HiCuts [27] and HyperCuts 
[28], separate the searching space into many equal-sized sub-
spaces using local optimizations. HiCuts cuts the searching 
space into many equal-sized sub-spaces recursively until the 
rules covered by each sub-space is less than the pre-defined 
bucket size called binth. To reduce memory consumption, 
HiCuts uses some heuristics to select the cutting dimension and 
decides how many sub-spaces should be cut using a space 
optimization function with a parameter called spfac. HyperCuts 
can be considered as an improved version of HiCuts, which is 
more flexible in that it allows cutting on multiple fields per step, 
resulting in a fatter and shorter decision tree. Besides, several 
optimizations are adopted in HyperCuts, such as node merging, 
rule overlap, region compaction and pushing common rule 
subsets upwards. But both HiCuts and HyperCuts have the 
same rule replication problem for rules spanning multiple sub-
spaces, especially for large rule tables. Figure 1b and Figure 1c 
show decision-trees generated by HiCuts and HyperCuts. 

EffiCuts [22] observed that real-life rules exhibit several 
inherent characteristics, and a good rule set partitioning can 
reduce rule replications dramatically. Thus, instead of building 
a single decision-tree for all rules, EffiCuts separates rules into 
several subsets with each subset creates its own decision-tree 
independently using HyperCuts. However, with all F fields 
considered, up to 2F decision-trees can be generated for F-tuple 
classifiers, resulting in a large number of overall memory 
accesses. In contrast, HybridCuts [24] separates rules based on 
single individual rule field rather than all F fields in EffiCuts, 
thus, HybridCuts achieves a significant reduction on the 
number of subsets (i.e., from 2F to F+1), which in turn reduces 
the overall memory accesses. However, due to the employment 
of HyperCuts, the worst-case search performance of 
HybridCuts is unbounded. Worst still, with the increase of the 
number of rule fields and the size of classifiers, the 
performance of HybridCuts may drop dramatically. Figure 1d 
and Figure 1e show decision-trees generated by EffiCuts and 
HybridCuts. 

Table I. An example OpenFlow 1.0 classifier 

Rule 

id 

Ingress 

port 

Ether 

src 

Ether 

dst 

Ether 

type 

VLAN 

id 

VLAN 

priority 

IP 

src 

IP 

dst 

IP 

proto 

IP 

ToS bits 

TCP/UDP 

Src Port 

TCP/UDP 

Dst Port 
Action 

R1 3 * * 2048 * * 206.159.213.125/32 101.152.182.8/30 0x06f/0xff 0 1024 : 65535 * drop 

R2 3 * * 2048 * * 15.25.70.8/30 * * 0 * 0:1599 forward 
R3 

R4 

R5 

5 

5 

* 

* 

* 

* 

* 

* 

* 

2048 

2048 

* 

* 

* 

* 

* 

* 

* 

* 

206.159.213.125/32 

* 

18.152.125.32/30 

* 

* 

0x11/0xff 

0x06f/0xff  

* 

1 

1 

* 

1024 : 65535 

* 

* 

1024 : 65535 

80 

* 

enqueue 

forward 

drop 

 
Table II. An example 2-tuple classifier 

Rule # Priority Field X Field Y Action 

R1 1 111* * drop 

R2 2 110* * forward 

R3 3 * 010* enqueue 

R4 4 * 011* modify 

R5 5 01** 10** forward 

R6 6 * * drop 

 



C. Splitting based Decision-trees 

In order to reduce rule replications suffered from equal-
sized cuttings, schemes based on splitting divide the searching 
space into unequal-sized sub-spaces containing nearly equal 
number of rules. HyperSplit [29], a well-known splitting 
scheme, splits the searching space into two unequal-sized sub-
spaces containing nearly equal number of rules. Due to its 
simple binary separation in sub-spaces, the worst-case search 

performance is explicit (i.e., F log(2N+1) for N F-tuple rules). 
However, even with the optimized binary space splitting, the 
memory consumption of HyperSplit still grows exponentially 
as the number of rules increases. Figure 1f shows the decision-
tree generated by HyperSplit, we can see that in each internal 
node, HyperSplit splits the selected field range into two sub-
ranges, with each sub-range covering rules as balanced as 
possible. 

ParaSplit [23] proposes a rule set partitioning algorithm to 
reduce rule set complexity, which significantly reduces the 
overall memory consumption in HyperSplit. However, 
ParaSplit employs a complex heuristic for rule set partitioning, 
which may require tens of thousands iterations to reach an 
optimal partitioning. SmartSplit [25], a recently proposed 
splitting based decision-tree, achieves high-speed classification 
by leveraging the logarithmic search times of balanced search 
trees. Unfortunately, its variable data structures and operations 
raise its barrier for practical implementation. Besides, it takes a 
long pre-processing time to build decision-trees. 

Clearly, none of the existing decision-tree techniques can 
make an excellent trade-off among storage, performance and 
updating, which seriously limit their scalability. 

III. IN-DEPTH CHALLENGE REVIEW 

In this section, we seek to further understand the reasons 
behind the difficulty in designing scalable decision-trees. We 
first list some challenges and key metrics for scalable packet 
classification. Then we make several quantitative evaluations 
on cutting and splitting to reveal the key problems faced by 
decision-trees. Finally, we review some efforts and analyze 

their effectiveness. For the convenience of evaluation and 
comparison, we adopt typical 5-tuple classifiers and 
ClassBench [30] as our test bed in this work. 

A. Review on Metrics 

Packet classification is a challenging problem due to the 
line-speed requirement of forwarding engines, in which a 
packet has to be processed within a very short time. On-chip 
caches can reduce memory access time, but cache memory is 
not scalable with the size of the flow table. Thus, two primary 
metrics for software-based packet classification are memory 
consumption and the number of memory accesses. A scalable 
packet classification should meet the following design goals: 

 Low memory consumption: Memory efficient scheme 
enables the constructed data structure to accommodate 
in small on-chip memory.  

 Low memory accesses: The fewer memory access for 
each lookup, the higher throughput for classification, 
which is critical to high-speed network. 

 Bounded worst-case performance: To guarantee the 
overall performance in real-life systems, it should 
bound the memory access under the worst-case. 

To achieve high classification speed, most existing methods 
focused on improving search performance while sacrificing 
update performance. However, due to frequent updates of rules 
in the context of SDN, rule update is becoming more relevant 
than ever. Thus, update performance is another key metric for 
algorithmic packet classification. To achieve fast rule updates, 
a scalable classification algorithm should also meet the 
following design goals: 

 Low pre-processing time: Low pre-processing time 
enables quick reconstruction of data structure, which is 
important for rule updates. 

 Easy for incremental updates: For each rule update, 
modest modifications to the data structure enable fast 
incremental updates other than rebuild from scratch. 
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(a). Geometric view of rules in Table II 
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(b). HiCuts-4 (binth=4) 
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(c). HyperCuts-2 (binth=2, pushup=1) 
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(d). EffiCuts-1 (binth=1) 
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(e). HybridCuts-1 (binth=1) 
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B.  Review and Analysis on Challenges  

By examining cutting and splitting processes for different 
classifiers, we identify the main trouble-maker for decision-
trees: Rule replication.  

Unlike prior rule overlapping in [21] or orthogonal rules in 
[25], rule replication is a more comprehensive metric for 
evaluating effectiveness of decision-trees. When a set of rules 
are highly overlapped or orthogonal with each other, it will be 
very difficult to separate them from each other by cutting or 
splitting. Take HiCuts in Figure 1b as an example, in order to 
separate R1 from R2, HiCuts needs to cut Field X into at least 8 
sub-ranges intuitively. However, it will result in serious rule 
replications for R3&R4&R6, where these rules are overlapped 
and orthogonal with R1&R2. To avoid overall memory 
explosion caused by rule replications, a two stage cuttings are 
adopted in Figure 1b, which may in turn lead to higher 
decision-trees. Thus, rule replication can not only reflect the 
degree of rule overlapping, but also the influence on overall 
memory consumption and memory access. 

To get more insights on the problem of rule replication, we 
make some experimental analyses for both cutting and splitting 
based decision-trees. Before that, we first give some definitions 
and notations: 

 Rule replication factor: #stored rules / rule set size, for 
example, the rule replication factor for HiCuts in 
Figure 1b is (3+4+3+4+4)/6=3. 

Figure 2 shows the results of rule replication factor for 
different type of seed rule sets, which are available in 
ClassBench. We can see that, cutting based HyperCuts suffers 
from serious rule replications problem, especially obvious for 
firewall rule set which contain a significant fraction of rules 
with many wildcard fields. In contrast, by using a simpler 
binary splitting in searching space, HyperSplit reduces rule 
replications obviously, which can be seen from Figure 2. 
However, with the increase of rule set size, both HyperCuts 
and HyperSplit suffer from an exponential explosion of rule 
replications. For example, for fw-10k rule set in Figure 3, both 
the rule replication factor of HyperCuts and HyperSplit could 
be more than 1000, indicating that at least 10 million rule 
pointers are required in decision-trees. Clearly, this is 
impractical in current cache hierarchies.  

C. Review and Analysis on Prior Art 

To alleviate the rule replication problem, a lot optimization 
methods and algorithms had been proposed. However, these 
efforts focus on reducing rule replications while sacrificing 
searching and updating performance. Next, we briefly review 
these efforts, and then analyze their effectiveness. 

Optimization Methods. Many optimizations have been 
proposed to alleviate above rule replication problem, such as 
pushing-upwards, rule overlap and region compaction in 
HyperCuts. Among these optimizations, pushing-upwards is 
the most effective and widely used method, which has been 
applied in many recent decision-trees, such as EffiCuts, 
HybridCuts and SmartSplit. Essentially, the rationale behind 
this optimization is simple: by pushing common rules upwards, 
the following cuttings can avoid vast rule replications caused 

by these few boring rules, which in turn reduces the overall 
memory consumption significantly (e.g., rule R6 in Figure 1c). 
Figure 4 shows the effectiveness of pushing-upwards 
optimization for HyperCuts. Obviously, the rule replication 
factor significantly drops down with the adoption of pushing-
upwards optimization. Unfortunately, this optimization does 
not work well in all cases. Due to the reason that each pushed 
rule requires an individual lookup during decision-tree 
searching, the overall number of memory access may be 
increased compared with original algorithms. As illustrated in 
Figure 5, the overall memory accesses overhead the worst-case 
tree depth significantly, with up to 10 times in some cases. 

Besides, some other optimizations, such as rule overlap and 
region compaction, can further reduce memory consumptions 
for decision-trees. However, these optimizations may increase 
the difficulties for rule updates. Take Figure 1c as an example, 
with the adoption of rule overlap, rule R3 and R4 should be 
removed from Leaf 8/9, as they are completely covered by 
another rule with a higher priority (i.e., R2 and R1). However, 
it is always easy to throw away, but difficult to pick up. If rule 
R1 or R2 is deleted from classifiers, a reconstruction of the 
decision-tree is needed since this delete operation may lead to 
confusion in Leaf 8/9. 

Rule Set Partitioning. Separating rules into subsets can 
reduce rule overlapping in each subset, which in turn improves 
the problem of rule replication in each individual decision-tree. 
EffiCuts is the most representative algorithm using rule set 
partitioning. Figure 6 and Figure 7 show the effectiveness as 
well as the influence for partitioned EffiCuts, compared with 
un-partitioned HyperCuts. As shown in Figure 6, EffiCuts 
improves rule replications dramatically, which in turn 
significantly reduce memory consumptions. However, this 
aggressive partitioning method also brings trouble to lookup 
performance illustrated in Figure 7. We can see that there are 
still a lot of sub-trees generated by EffiCuts even with the 
adoption of sub-tree merging option, which may lead to a 
larger overall memory accesses. 
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Figure 2. Evaluation of rule replication factor for seed rule sets 
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Recently, HybridCuts proposes an advanced partitioning 
which can reduce the number of sub-trees from 2F to F+1for F-
tuple classifiers, and this number is further reduced to 3 with an 
optimization for typical 5-tuple rules. SmartSplit, another 
partitioning based scheme, separates rules into at most 4 
subsets based on a memory estimator. However, both these 
partitioning schemes are based on the observations about 
address fields for typical 5-tuple classifiers, which seriously 
limit their adaptability for general flow tables. 

 Cutting or Splitting? Recently, more and more researchers 
have realized that a simple cutting or splitting is not enough for 
more and more complex classifiers, and a combination of them 
is a practical choice to reduce rule replications. But most of 
current schemes suffer a poor scalability from classifier size. 

EffiCuts, employs HyperCuts with an equi-dense cutting 
(i.e., splitting) option to build sub-trees for partitioned subsets. 
HybridCuts, as suggested by its name, makes use of a 
combination of one- and multi-dimensional cuttings for tree 
constructions. Instead of using these predetermined cutting or 
splitting, SmartSplit introduces a memory estimator to make 
use of cutting or splitting dynamically. These combinations are 
far from achieving optimal effectiveness. From experimental 
evaluations in Section V, we can conclude that the performance 
of these algorithms drop quickly with the size of rule sets 
increases. One of the primary reasons is that, all these schemes 
simply adopt HyperCuts or HyperSplit during the construction 
of the decision-trees, which may seriously limit their scalability 
for larger classifiers. Actually, with the increase of the size of 
the classifier, we will encounter more and more overlapped 
rules or quasi orthogonal rules in partitioned subsets, which 
may affect the overall performance significantly. 

Thus, these existing efforts focus on reducing rule 
replications while sacrificing search or update performance. 

IV. THE PROPOSED ALGORITHM 

In this section, we first introduce ideas behind the design of 
scalable packet classification. After that, we make several 
important observations on typical 5-tuple rule sets as well as 

OpenFlow based rule tables, which can help us to separate 
rules into a very few subsets. Finally, we describe a practical 
framework called CutSplit to exploit the benefits of cutting and 
splitting techniques adaptively. By addressing the central 
problem caused by uncontrollable rule replications suffered by 
the major efforts, CutSplit not only pushes the performance of 
algorithmic packet classification more closely to hardware-
based solutions, but also reduces the memory consumption to a 
practical level. Moreover, our work achieves low pre-
processing time for rule updates, a problem that has long been 
ignored by previous decision-trees, but is becoming more 
relevant in the context of SDN due to frequent updates of rules. 

A. Ideas 

According to above reviews, cutting can separate searching 
space into smaller sub-spaces quickly for faster classification, 
but it suffers from serious rule replications and implicit worst-
case search performance. In contrast, splitting can significantly 
alleviate rule replication problem and offer a bounded worst-
case search performance, but its binary splitting worsens the 
overall search performance. Therefore, to foster the strengths 
and circumvent the weaknesses of cutting and splitting, the 
idea directly perceived is to combine the following two 
strategies: 

 Faster Pre-Cutting: Cutting based separating on the 
searching space, which can reach any smaller sub-
spaces with a very few steps. 

 Explicit Post-Splitting: Splitting based searching on 
sub-spaces, which can achieve deterministic worst-case 
search bound and lower memory consumption.  

Figure 8 shows the framework of the following CutSplit. 
However, in order to design scalable algorithms to meet above 
goals, effective combination of these two ideas still faces 
several difficulties and challenges: 

 For memory storage: Since rule overlapping can lead 
to serious rule replications, how to alleviate this 
problem during cutting and splitting? 

 
Figure 4. Effectiveness of pushing-upwards for HyperCuts-8 

 
Figure 5. Influence of pushing-upwards for HyperCuts-8 
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Figure 6. Effectiveness of rule set partitioning for EffiCuts-8 
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Figure 7. Influence of rule set partitioning for EffiCuts-8 



 For memory access: Since prior cuttings have no 
explicit worst-case bound for search, how to guarantee 
the worst-case bound for pre-cuttings? Besides, if 
partitioning employed, in order to reduce overall 
memory accesses, how to generate rule subsets as few 
as possible? 

 For rule updates: Since the awareness of the 
importance of optimizations alleviating rule 
overlapping problems comes into consideration, how 
to minimize impacts on update? 

The answers to these questions are key ideas in this paper. 
Our solution can be summarized as the following three steps: 

 Step 1: Partitioning based on a very few small fields. 
In order to reduce rule overlapping and number of rule 
subsets, we separate rules into subsets based on their 
characteristics shared in a very few fields. 

 Step 2: Modified cuttings without prior optimizations. 
After partitioning of rule sets, we get a set of fields for 
each subset, where a set of simpler but more effective 
cuttings can be applied for faster classification. 

 Step 3: Combination of pre-cutting & post-splitting. 
Thanks to the clever partitioning and the first stage 
faster cuttings, we can obtain any sub-space containing 
much less rules without the trouble of serious rule 
replications, which enables a simpler binary splitting 
for subsequent processing with bounded worst-case 
performance. Besides, rule replication only appear at 
the second splitting stage, leading to high performance 
for incremental updates. 

B. Observations & Partitioning for Rule Sets 

Classifier rules in real-life applications have structural 
redundancies and several inherent characteristics that can be 
exploited to reduce the complexity [19][27][28][31][33][38]. 
Thus, we use the publicly available ClassBench and 
OpenFlow-like rule tables for study to make observations on 
common characteristics of rule sets. The two OpenFlow-like 
rule tables are generated based on 216 real-life rules from 
enterprise customers. We first give a few definitions, then we 
present the key observations related to the following rule set 
partitioning. 

1) Definitions 

Given an N-dimensional rule R = (F1, ... Fi, ... FN) and a 

threshold value vector T = (T1, ... Ti, ... TN), where i ∈ {1, 2, ... 

N}, we give some definitions for field Fi as follows: 

 Fi is a big field: the range length of field Fi > threshold 
value Ti. 

 Fi is a small field: the range length of field Fi ≤ 

threshold value Ti. 

Based on above definitions for rule field Fi, we further give 
some definitions for rule R as follows: 

 R is a big rule: i {1, 2, ... N}, Fi in R is a big field. 

 R is a small-k rule: R contains at least k small fields. 

For the sake of convenience in writing, we use a 
logarithmic vector T’ to represent T equivalently. For example, 
if we set Ti = 216, then index logarithmic Ti’ = 16. 

2) At Least One Small Field & Very Few Small Fields 

Based on above definitions, we make several observations 
for a number of rule sets. For example, Figure 9 shows the ratio 
of big rules for IP Chains (IPC) rule set. It is clear that the ratio 
of big rules is very low even under very demanding thresholds. 
Due to length limitation, more results for Access Control Lists 
(ACL) and Firewalls (FW) rule sets will be available in [40]. 
Table III shows statistical results for 5-tuple rule sets and 
OpenFlow-like rule tables. Clearly, this observation is still 
effective for OpenFlow-like rule tables. From Table III, we can 
also draw a conclusion that the vast majority of rules have at 
least one as well as a very few number of small fields.  

3) Rule Set Partitioning 

Based on above observations, we propose a partitioning 
algorithm to separate rules into a few subsets. The purpose of 
our partitioning is to obtain a few subsets without duplicates 
among each other. For each subset, all contained rules should 
share a common characteristic for a set of rule fields: small 
field. Next, we introduce a simple heuristic as follows:  

--Step1: Remove big rules. Since the number of big rules is 
negligible, we can simply apply HyperSplit for these rules. 

--Step2: Select a few distinct fields. Count the number of 
distinct small field in each field and pick up a few highest ones, 
where the vast majority (e.g., >95%) rules contain at least one 
small field in selected fields. For the remaining rules, we can 
simple merge them into above big rules. 
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Figure 8. The framework of CutSplit 

 
Figure 9. The ratio of big rules for seed-ipc rule set 

 



--Step3: Fields-wise partitioning. Assume M fields have 
been selected for F-tuple rule sets. We categorize rules based 
on field length (i.e., big or small) in all selected fields, leading 
to at most 2M-1 subsets. This partitioning is different from 
EffiCuts from two perspectives: fewer fields and more flexible 
definition about small/big field. 

--Step4: Selective subset merging. For subsets containing a 
very few rules, we can merge these rules into other subsets that 
have fewer small fields. Due to the consideration on its 
relevance and space limitation, we do not elaborate on this 
algorithm in this paper. 

Take rule set in Table I as an example, we first remove R5 
into a big rule subset, after then, we calculate the number of 
distinct small fields in each field and pick up ip_src & ip_dst as 
two most distinct fields. Thus, we can partition the rule set into 
four subset: big_subset={R5}, (smallip_src, smallip_dst)={R1},  
(bigip_src, smallip_dst)= {R3} and (smallip_src, bigip_dst)={R2, R4}. 
Finally, we can merge (smallip_src, smallip_dst) with (bigip_src, 
smallip_dst) for a new subset (NULL, smallip_dst)={R1, R3}. Thus, 
three subsets are generated for the sample rule set: {R5}, {R2, 
R4} and {R1, R3}. 

C. CutSplit: Pre-Cutting & Post-Splitting 

The rationale behind above strategy of rule set partitioning 
is simple: by grouping rules that are small in the same fields, 
we get a few dimensions in the space where the extensive rule 
replications bothering traditional cuttings by wide overlaps are 
significantly reduced. Moreover, subsets partitioned by this 
way enable simple and space-efficient fixed-cutting algorithms. 
The framework of CutSplit is shown in Figure 8. Next, we 
describe Pre-Cutting and Post-Splitting respectively. 

Stage 1: Faster Pre-Cutting. For partitioned rule subsets, 
some simpler and more space-efficient cuttings can be applied 
to small fields, separating searching space into much smaller 
sub-spaces in a few steps. Figure 10 shows two cutting 
examples for two sample rule sets with different number of 
small fields. Although the two cuttings in Figure 10 share some 
similarities to HiCuts and HyperCuts, they are different from 
the two classical techniques in two aspects: fixed cutting fields 
and no optimizations. Compared with FiCuts in HybridCuts, 
our multi-field cuttings are more adaptive to rule sets with 
more than one small field. The cutting processes stop when the 
number of contained rules is smaller than a pre-defined value 
binth or the sub-spaces reach the threshold of sub-space which 
is defined by threshold values of each small field. Take Figure 
10 as an example, assume binth < 4 and the threshold value 
vector T = (4, 4), the first stage cuttings should stop in gray 

areas respectively and resort to the next stage methods. It is 
easy to see that rule replication cannot appear in the pre-
cutting stage, as all cuttings are conducted in small fields and 
stop at the threshold of sub-spaces. 

Stage 2: Explicit Post-Splitting: After the first stage 
cuttings, the searching space has been separated into much 
smaller sub-spaces, where each sub-space contains much fewer 
rules compared with the original rule set. Table V in Section V 
shows the number of rules after pre-cuttings for 12 rule sets 
containing 100K rules, it is clear that the number of rules in 
sub-space is quite small after pre-cuttings. Thus, based on our 
above review and analysis, HyperSplit can be well applied for 
the following decision-tree construction.  

V. EXPERIMENTAL RESULTS 

In this section, we present the performance results of 
CutSplit with other representative decision-tree techniques: 
HyperCuts, HyperSplit, EffiCuts, HybridCuts and SmartSplit. 
We are very grateful to the authors of these algorithms, their 
open source codes and selfless personal help enable us to make 
a fair and justifiable comparison. As a response, our 
implementation of CutSplit is also publicly available in [40]. 
Based on key metrics in Section III, we evaluate our algorithm 
from memory consumption, memory access and pre-processing 
time respectively. All experiments are run on a machine with 
AMD A8-5600K CPU@3.60GHz and 8G DRAM. The 
operation system is Ubuntu 14.04.  

A. Memory Consumption  

Figure 11 shows the memory consumption of data structure 
for different decision-trees. It is clear that the memory 
consumption of HyperCuts and HyperSplit increase 
dramatically with the size of rule sets. For other four 
algorithms using rule set partitioning, the memory consumption 
scale well with the size of rule sets. This scalability is also stay 
for larger rule sets in Figure 13. As shown in Figure 13, 
CutSplit achieves a significant memory reduction compared 
with EffiCuts, ranging from 3 times to 20 times, with an 
average reduction of over 10 times. Compared with 
HybridCuts and SmartSlit, CutSplit also reduces memory 
consumption from 20% to 90%, with an average reduction of 
65% and 50% respectively.  

Table III. Statistical results for 5-tuple & OpenFlow-like rules (Assuming 

the value of Ti is half of range length in field Fi) 

Rule set(#rules) 
Number of 

big rules 

Number of small-k rules 

k=1 k=2 k=3 k=4 k≥5 

seed-acl(752) 3 749 739 425 0 0 

seed-fw(269) 4 265 218 17 2 0 

seed-ipc(1550) 2 1548 1472 789 5 0 

openflow-1(716) 
 

0 716 708 655 426 0 

openflow-2(864) 

 
0 864 852 761 429 0 
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B. Memory Access 

Figure 12 and Figure 14 show the performance in terms of 
the number of memory access for different algorithms. It is 
clear that CutSplit performs much better than other algorithms.  
As shown in Figure 14, CutSplit achieves an average of 3x 
speed-up compared with EffiCuts. Compared with HybridCuts 
and SmartSlit, CutSplit also achieves an average of 0.2x and 
0.6x speed-up respectively. In addition, since the worst-case 
memory access can be guaranteed both in Pre-Cutting stage 
and Post-Splitting stage, the worst-case performance for 
CutSplit can be bounded. 

C.  Pre-processing time 

1) Pre-processing time for decision-tree construction 

Pre-processing time of EffiCuts, HybridCuts, SmartSplit 
and CutSplit are shown in Table IV. Compared to EffiCuts and 
SmartSplit, CutSplit runs about 1000 times faster when 
handling the same rule sets on average. Compared to 
HybridCuts, CutSplit also runs about 50 times faster on 
average. For most rule sets with 100K rules, CutSplit can 
complete decision-tree construction in few seconds, while most 
existing algorithms usually takes several hours. Thus, CutSplit 
is more practical for online updating. 

2) More details about splitting based sub-trees in CutSplit 

As rule replications only appear in post-splitting stage, 
incremental rule updates can be easily implemented in CutSplit. 
Take Figure 10 as an example. If we need to delete a rule from 
gray areas, only four rules in gray areas may be influenced, 
thus, we can simply apply HyperSplit to rebuild a sub-tree for 
remaining three rules. In contrast, if we need to add a rule to 
the rule set, we just need to identify its small fields and put it 
into a right sub-space. Thus, the most time consuming part of 
incremental rule update for CutSplit is the post-splitting stage. 
We evaluate all sub-trees constructed by HyperSplit and the 
results are given in Table V. As shown in this table, the 
average number of influenced rule is very small (i.e., 144 for 
100K rules) and the average pre-processing time for sub-trees 
reconstruction is 50us.  

Table IV. Pre-processing time for decision-tree construction (s) 

Rule set EffiCuts HybridCuts SmartSplit CutSplit 

ACL1_100K 4784.4 183.1 632.5 11.7 

ACL2_100K 8338.4 91.0 427.4 4.1 

ACL3_100K 8453.6 148.6 6403.7 2.6 

ACL4_100K 8232.6 161.8 3336.1 3.4 

ACL5_100K 8905.3 138.5 2695.9 3.0 

FW1_100K 4250.7 165.1 1392.1 3.0 

FW2_100K 2842.2 161.9 1652.9 2.5 

FW3_100K 4281.2 187.8 3855.4 3.0 

FW4_100K 1662.1 280.3 4553.6 3.5 

FW5_100K 3778.4 179.2 3212.7 2.7 

IPC1_100K 8615.0 151.5 3133.4 2.6 

IPC2_100K 6070.4 229.6 3187.9 2.6 

MEAN 5851 173 2874 3.7 

Table V. More details about splitting based sub-trees in CutSplit 

Rule set 
Number of  rules  Pre-processing time (us) 

Worst-case Average Worst-case Average 

ACL1_100K 344 17.1 569 45.6 

ACL2_100K 473 25.3 6975 125.1 

ACL3_100K 31 10.4 207 21.3 

ACL4_100K 320 18.7 8693 168.7 

ACL5_100K 93 12.8 683 28.9 

FW1_100K 193 16.4 2664 71.8 

FW2_100K 10 9.4 28 14.8 

FW3_100K 118 14.2 1068 43.2 

FW4_100K 10 9.0 23 12.9 

FW5_100K 111 14.4 869 38.5 

IPC1_100K 14 9.7 57 18.1 

IPC2_100K 10 9.6 129 15.1 

MEAN 144 14 1830 50 

 

 

  

1

10

100

1000

10000

ACL_100 ACL_1K ACL_5K ACL_10K FW_100 FW_1K FW_5K FW_10K IPC_100 IPC_1K IPC_5K IPC_10K

HyperCuts HyperSplit EffiCuts HybridCuts SmartSplit CutSplit

binth=8, T'(sa,da)=(16,16)

 
Figure 11. Memory consumption pre rule for small rule sets (Byte/rule) 
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Figure 12. Memory access for small rule sets 
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Figure 13. Memory consumption for larger rule sets (MB) 
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Figure 14. Memory access for larger rule sets 

 



VI. CONCLUSION 

In this paper, we first conduct some in-depth review on 
issues that led to the unsuccess of the major decision-tree 
techniques for scalable packet classifications. With the insights 
obtained, we propose a practical framework called CutSplit, 
which can exploit the benefits of cutting and splitting 
techniques adaptively. By addressing the central problem 
caused by uncontrollable rule replications suffered by the 
major efforts, CutSplit not only pushes the performance of 
algorithmic packet classification more closely to hardware-
based solutions, but also reduces the memory consumption to a 
practical level. Moreover, CutSplit achieves low pre-processing 
time for rule updates, a problem that has been ignored by most 
previous decision-trees. Compared with EffiCuts, experimental 
results show that, CutSplit achieves a memory reduction over 
10 times, as well as 3x improvement on performance in terms 
of the number of memory access on average.  
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