
CutSplit: A Decision-Tree Combining Cutting and

Splitting for Scalable Packet Classification

Wenjun Li†, Xianfeng Li†, Hui Li†* and Gaogang Xie§
†School of Electronic and Computer Engineering, Peking University, China, §ICT, CAS, China

wenjunli@pku.edu.cn, lixianfeng@pkusz.edu.cn, lih64@pku.edu.cn, xie@ict.ac.cn

Abstract—Efficient algorithmic solutions for multi-field

packet classification have been a challenging problem for many

years. This problem is becoming even worse in the era of

Software Defined Network (SDN), where flow tables with

increasing complexities are playing a central role in the

forwarding plane of SDN. In this paper, we first conduct an

unprecedented in-depth reasoning on issues that led to the

unsuccess of the major quests for scalable algorithmic solutions.

With the insights obtained, we propose a practical framework

called CutSplit, which can exploit the benefits of cutting and

splitting techniques adaptively. By addressing the central

problem caused by uncontrollable rule replications suffered by

the major efforts, CutSplit not only pushes the performance of

algorithmic packet classification more closely to hardware-based

solutions, but also reduces the memory consumption to a

practical level. Moreover, our work achieves low pre-processing

time for rule updates, a problem that has long been ignored by

previous decision-trees, but is becoming more relevant in the

context of SDN due to frequent updates of rules. Experimental

results show that using ClassBench, CutSplit achieves a memory

reduction over 10 times, as well as 3x improvement on

performance in terms of the number of memory access on

average.

Keywords—Packet Classification; OpenFlow; Decision Tree;

Algorithm; Firewall

I. INTRODUCTION

Modern network devices provide services beyond basic
packet forwarding, such as security, policy routing and Quality
of Service (QoS). Packet classification is the core functionality
for supporting these services. The purpose of packet
classification is to find a matching rule from a packet classifier
for each incoming packet, and apply a corresponding action to
the packet. A packet classifier is a set of rules, with each rule
consisting of a tuple of field values (exact value, prefix or
range) and an action to be taken in case of a matching. An
example 12-tuple OpenFlow [1] classifier is shown in Table I.
As the bottleneck of advanced forwarding, packet classification
has attracted research attentions for almost two decades.

Current packet classifications can be categorized broadly
into two major approaches: architectural and algorithmic
[2][3][4]. Architectural approaches based on Ternary Content
Addressable Memory (TCAM) have been the dominated

implementation of packet classification in industry. Although
TCAM enables parallel lookups on rules for line-speed
classification, it is expensive, area-inefficient and power-
hungry, which seriously limit its scalability. During the past
decade, a lot methods and algorithms had been proposed to
alleviate these problems, such as classifier minimization
[5][6][7][8], range encoding [9][10][11][12][13], circuit
modification [13][14] and pre-classifier [15][16]. However,
due to inherent limitations of TCAM, the TCAM capacity is
not expected to increase significantly in the near future [4].
Worse still, with the deployment of SDN/NFV based
applications, the number of rule fields and size of classifiers are
increasing dramatically, outpacing the TCAM capacity
evolution. For example, current OpenFlow Switch examines
more than 15 fields to categorize packets into different flows,
and this number is expected to grow in the future [17]. Thus,
multi-field packet classification has become even more
prominent and challenging than ever.

Recently, researchers have been actively investigating less
expensive, more energy-efficient and more scalable algorithmic
alternatives to TCAM-based hardware solutions, such as hash-
based algorithms [17][36][39], hardware-assisted schemes
[19][20][21][37] and decision-tree techniques [18][22][24][25].
Among them, decision-tree has been recognized as one of the
most promising approaches, since they can be well applied to
rules with more fields and pipelined for high classification
throughput [26]. In general, there have been two major threads
of research building decision-trees: equal-sized cutting and
equal-dense splitting. Cutting based schemes, such as HiCuts
[27] and HyperCuts [28], separate the searching space into
many equal-sized sub-spaces using local optimizations. But
both schemes have the same rule replication problems,
especially for large rule sets. EffiCuts [22], a well-known
cutting scheme, significantly reduces memory overhead of
previous cutting algorithms by separating rules into at most 2F
subsets for F-tuple classifiers. As an improvement, HybridCuts
[24] achieves a significant reduction on the number of subsets,
which in turn reduces the overall memory accesses. In contrast,
HyperSplit [29], a well-known splitting scheme, splits the
searching space into two unequal-sized sub-spaces that contain
nearly equal number of rules. To achieve better scalability for
different rule sets, SmartSplit [25] separates rules into a few
subsets to build balanced trees dynamically. However, as far as
we know, seldom of these state-of-the-art approaches can make
an excellent trade-off among storage, performance and
updating, which seriously limit their scalability.

In this paper, we first seek to understand the reasons behind
the difficulty in designing scalable decision-trees for multi-

————————————————
Hui Li is also with the Shenzhen Key Lab of Information Theory & Future
Network Architecture, Future Network PKU Lab of National Major Research
Infrastructure, Shenzhen Engineering Lab of Converged Networking
Technology, Huawei & PKU Jointly Engineering Lab of Future Network
Based on SDN and the PKU Institute of Big Data Technology, Shenzhen
Graduate School, Peking University, China.

field packet classification. After that, we make some novel
observations on typical 5-tuple rule sets as well as OpenFlow
based rule tables, which can help us separate rules into few
subsets. Finally, we present our proposed CutSplit, a decision-
tree scheme combing cutting and splitting for packet
classification, which can improve storage efficiency and
performance simultaneously. Moreover, our work achieves low
pre-processing time for rule updates, a problem that has long
been ignored by most previous decision-trees.

We evaluate our algorithm using ClassBench [30] and
show that, even for rule sets up to 100K entries, CutSplit is
able to produce a very small number of short decision trees
with low memory overhead. Compared with EffiCuts, CutSplit
achieves a memory reduction over 10 times, as well as 3x
improvement on performance in terms of the number of
memory access on average. Moreover, CutSplit can rebuild
decision-trees in a few seconds as well as sub-trees in 50us on
average.

The rest of the paper is organized as follows. In Section II,
we first briefly summarize the related work. After that, we
review and analyze reasons behind the difficulty in designing
scalable decision-trees in Section III. Based on these analyses,
we make a set of important observations and present the
technical details of CutSplit in Section IV. Section V provides
experimental results. Finally, Section VI draws conclusion.

II. BACKGROUND AND RELATED WORK

In this section, we first review the background about
decision-tree based packet classification and two major threads
of research on decision-tree constructions. After that, we
briefly describe the related work and recent efforts in threads of
cutting and splitting respectively.

A. Decision-tree based Packet Classification

Decision-tree is one of the most wildly studied algorithmic
approaches, as well as decomposition [31][32][33][34] and
tuple space [17][35][36]. In decision-tree based schemes, the
geometric view of the packet classification problem is taken
and a decision tree is built. The root node of the tree covers the
whole searching space containing all rules. Each rule is
considered as a hypercube in an F-dimensional space, where F
is the number of fields in a rule. Each incoming packet defines
a point in this F-dimensional space. They work by recursively
partitioning the searching space into smaller sub-spaces until a
predefined number of rules are contained by each sub-space. In
case a rule spans multiple sub-spaces, rule replication happens,
which is an undesirable case (e.g., R3, R4 and R6 in Figure 1b).
When a packet arrives, the decision tree is traversed to find a
matching rule at a leaf node. According to the partitioning
method on searching space, current decision-tree based
techniques can be categorized broadly into two major
approaches: equal-sized cutting and equal-dense splitting.

 Next, we briefly summarize the related work and some
recent efforts. For the convenience of description, we use a
small example of 2-tuple rule set shown in Table II for
subsequent discussions. Figure 1a shows the geometric
representation of example rules given in Table II.

B. Cutting based Decision-trees

Cutting based schemes, such as HiCuts [27] and HyperCuts
[28], separate the searching space into many equal-sized sub-
spaces using local optimizations. HiCuts cuts the searching
space into many equal-sized sub-spaces recursively until the
rules covered by each sub-space is less than the pre-defined
bucket size called binth. To reduce memory consumption,
HiCuts uses some heuristics to select the cutting dimension and
decides how many sub-spaces should be cut using a space
optimization function with a parameter called spfac. HyperCuts
can be considered as an improved version of HiCuts, which is
more flexible in that it allows cutting on multiple fields per step,
resulting in a fatter and shorter decision tree. Besides, several
optimizations are adopted in HyperCuts, such as node merging,
rule overlap, region compaction and pushing common rule
subsets upwards. But both HiCuts and HyperCuts have the
same rule replication problem for rules spanning multiple sub-
spaces, especially for large rule tables. Figure 1b and Figure 1c
show decision-trees generated by HiCuts and HyperCuts.

EffiCuts [22] observed that real-life rules exhibit several
inherent characteristics, and a good rule set partitioning can
reduce rule replications dramatically. Thus, instead of building
a single decision-tree for all rules, EffiCuts separates rules into
several subsets with each subset creates its own decision-tree
independently using HyperCuts. However, with all F fields
considered, up to 2F decision-trees can be generated for F-tuple
classifiers, resulting in a large number of overall memory
accesses. In contrast, HybridCuts [24] separates rules based on
single individual rule field rather than all F fields in EffiCuts,
thus, HybridCuts achieves a significant reduction on the
number of subsets (i.e., from 2F to F+1), which in turn reduces
the overall memory accesses. However, due to the employment
of HyperCuts, the worst-case search performance of
HybridCuts is unbounded. Worst still, with the increase of the
number of rule fields and the size of classifiers, the
performance of HybridCuts may drop dramatically. Figure 1d
and Figure 1e show decision-trees generated by EffiCuts and
HybridCuts.

Table I. An example OpenFlow 1.0 classifier

Rule

id

Ingress

port

Ether

src

Ether

dst

Ether

type

VLAN

id

VLAN

priority

IP

src

IP

dst

IP

proto

IP

ToS bits

TCP/UDP

Src Port

TCP/UDP

Dst Port
Action

R1 3 * * 2048 * * 206.159.213.125/32 101.152.182.8/30 0x06f/0xff 0 1024 : 65535 * drop

R2 3 * * 2048 * * 15.25.70.8/30 * * 0 * 0:1599 forward
R3

R4

R5

5

5

*

*

*

*

*

*

*

2048

2048

*

*

*

*

*

*

*

*

206.159.213.125/32

*

18.152.125.32/30

*

*

0x11/0xff

0x06f/0xff

*

1

1

*

1024 : 65535

*

*

1024 : 65535

80

*

enqueue

forward

drop

Table II. An example 2-tuple classifier

Rule # Priority Field X Field Y Action

R1 1 111* * drop

R2 2 110* * forward

R3 3 * 010* enqueue

R4 4 * 011* modify

R5 5 01** 10** forward

R6 6 * * drop

C. Splitting based Decision-trees

In order to reduce rule replications suffered from equal-
sized cuttings, schemes based on splitting divide the searching
space into unequal-sized sub-spaces containing nearly equal
number of rules. HyperSplit [29], a well-known splitting
scheme, splits the searching space into two unequal-sized sub-
spaces containing nearly equal number of rules. Due to its
simple binary separation in sub-spaces, the worst-case search

performance is explicit (i.e., F log(2N+1) for N F-tuple rules).
However, even with the optimized binary space splitting, the
memory consumption of HyperSplit still grows exponentially
as the number of rules increases. Figure 1f shows the decision-
tree generated by HyperSplit, we can see that in each internal
node, HyperSplit splits the selected field range into two sub-
ranges, with each sub-range covering rules as balanced as
possible.

ParaSplit [23] proposes a rule set partitioning algorithm to
reduce rule set complexity, which significantly reduces the
overall memory consumption in HyperSplit. However,
ParaSplit employs a complex heuristic for rule set partitioning,
which may require tens of thousands iterations to reach an
optimal partitioning. SmartSplit [25], a recently proposed
splitting based decision-tree, achieves high-speed classification
by leveraging the logarithmic search times of balanced search
trees. Unfortunately, its variable data structures and operations
raise its barrier for practical implementation. Besides, it takes a
long pre-processing time to build decision-trees.

Clearly, none of the existing decision-tree techniques can
make an excellent trade-off among storage, performance and
updating, which seriously limit their scalability.

III. IN-DEPTH CHALLENGE REVIEW

In this section, we seek to further understand the reasons
behind the difficulty in designing scalable decision-trees. We
first list some challenges and key metrics for scalable packet
classification. Then we make several quantitative evaluations
on cutting and splitting to reveal the key problems faced by
decision-trees. Finally, we review some efforts and analyze

their effectiveness. For the convenience of evaluation and
comparison, we adopt typical 5-tuple classifiers and
ClassBench [30] as our test bed in this work.

A. Review on Metrics

Packet classification is a challenging problem due to the
line-speed requirement of forwarding engines, in which a
packet has to be processed within a very short time. On-chip
caches can reduce memory access time, but cache memory is
not scalable with the size of the flow table. Thus, two primary
metrics for software-based packet classification are memory
consumption and the number of memory accesses. A scalable
packet classification should meet the following design goals:

 Low memory consumption: Memory efficient scheme
enables the constructed data structure to accommodate
in small on-chip memory.

 Low memory accesses: The fewer memory access for
each lookup, the higher throughput for classification,
which is critical to high-speed network.

 Bounded worst-case performance: To guarantee the
overall performance in real-life systems, it should
bound the memory access under the worst-case.

To achieve high classification speed, most existing methods
focused on improving search performance while sacrificing
update performance. However, due to frequent updates of rules
in the context of SDN, rule update is becoming more relevant
than ever. Thus, update performance is another key metric for
algorithmic packet classification. To achieve fast rule updates,
a scalable classification algorithm should also meet the
following design goals:

 Low pre-processing time: Low pre-processing time
enables quick reconstruction of data structure, which is
important for rule updates.

 Easy for incremental updates: For each rule update,
modest modifications to the data structure enable fast
incremental updates other than rebuild from scratch.

R2 R1R6

0000 1111

0000

1111

R5

R4

R3

Field X

Fi
el

d
 Y

(a). Geometric view of rules in Table II

Leaf 2
R3,R4,R5,R6

Leaf 4
R2,R3,R4,R6

Cut-X:4

Leaf 3
R3,R4,R6

Leaf 1
R3,R4,R6

Leaf 5
R1,R3,R4,R6

Cut-X:2

(b). HiCuts-4 (binth=4)

Cut-X:2
Cut-Y:2

Cut-X:4
Cut-Y:2

Leaf 1
R3,R4

Leaf 2
R5

Leaf 3
R1,R2

Pushup: R6

Leaf 4
R2

Leaf 5
R1

Leaf 6
R3,R4

Leaf 7
R3,R4

Leaf 8
R2(R3&4)

Leaf 9
R1(R3&4)

(c). HyperCuts-2 (binth=2, pushup=1)

Cut-X:8
Cut-Y:0

Cut-X:0
Cut-Y:8

Leaf 5
R5

Leaf 6
R6

Leaf 1
R2

Leaf 2
R1

Leaf 3
R3

Leaf 4
R4

(small, large)={R1,R2}

(small, small)={R5} (large, large)={R6}

(large, small)={R3,R4}

(d). EffiCuts-1 (binth=1)

Cut-X:8 Cut-Y:8

Leaf 6
R6

Leaf 2
R2

Leaf 3
R1

Leaf 4
R3

Leaf 5
R4

(X: small)={R1,R2,R5}

(large, large)={R6}

(Y: small)={R3,R4}

Leaf 1
R5

(e). HybridCuts-1 (binth=1)

 Figure 1. Review on related work

Split-X
13

Split-Y
5

X <= 13

Split-Y
5

X > 13

Y <= 5 Y > 5 Y <= 5 Y > 5

Leaf 1
R2,R3,

R6

Leaf 2
R2,R4,
R5,R6

Leaf 3
R1,R3,

R6

Leaf 4
R1,R4,

R6

(f). HyperSplit-4 (binth=4)

lee
Highlight

B. Review and Analysis on Challenges

By examining cutting and splitting processes for different
classifiers, we identify the main trouble-maker for decision-
trees: Rule replication.

Unlike prior rule overlapping in [21] or orthogonal rules in
[25], rule replication is a more comprehensive metric for
evaluating effectiveness of decision-trees. When a set of rules
are highly overlapped or orthogonal with each other, it will be
very difficult to separate them from each other by cutting or
splitting. Take HiCuts in Figure 1b as an example, in order to
separate R1 from R2, HiCuts needs to cut Field X into at least 8
sub-ranges intuitively. However, it will result in serious rule
replications for R3&R4&R6, where these rules are overlapped
and orthogonal with R1&R2. To avoid overall memory
explosion caused by rule replications, a two stage cuttings are
adopted in Figure 1b, which may in turn lead to higher
decision-trees. Thus, rule replication can not only reflect the
degree of rule overlapping, but also the influence on overall
memory consumption and memory access.

To get more insights on the problem of rule replication, we
make some experimental analyses for both cutting and splitting
based decision-trees. Before that, we first give some definitions
and notations:

 Rule replication factor: #stored rules / rule set size, for
example, the rule replication factor for HiCuts in
Figure 1b is (3+4+3+4+4)/6=3.

Figure 2 shows the results of rule replication factor for
different type of seed rule sets, which are available in
ClassBench. We can see that, cutting based HyperCuts suffers
from serious rule replications problem, especially obvious for
firewall rule set which contain a significant fraction of rules
with many wildcard fields. In contrast, by using a simpler
binary splitting in searching space, HyperSplit reduces rule
replications obviously, which can be seen from Figure 2.
However, with the increase of rule set size, both HyperCuts
and HyperSplit suffer from an exponential explosion of rule
replications. For example, for fw-10k rule set in Figure 3, both
the rule replication factor of HyperCuts and HyperSplit could
be more than 1000, indicating that at least 10 million rule
pointers are required in decision-trees. Clearly, this is
impractical in current cache hierarchies.

C. Review and Analysis on Prior Art

To alleviate the rule replication problem, a lot optimization
methods and algorithms had been proposed. However, these
efforts focus on reducing rule replications while sacrificing
searching and updating performance. Next, we briefly review
these efforts, and then analyze their effectiveness.

Optimization Methods. Many optimizations have been
proposed to alleviate above rule replication problem, such as
pushing-upwards, rule overlap and region compaction in
HyperCuts. Among these optimizations, pushing-upwards is
the most effective and widely used method, which has been
applied in many recent decision-trees, such as EffiCuts,
HybridCuts and SmartSplit. Essentially, the rationale behind
this optimization is simple: by pushing common rules upwards,
the following cuttings can avoid vast rule replications caused

by these few boring rules, which in turn reduces the overall
memory consumption significantly (e.g., rule R6 in Figure 1c).
Figure 4 shows the effectiveness of pushing-upwards
optimization for HyperCuts. Obviously, the rule replication
factor significantly drops down with the adoption of pushing-
upwards optimization. Unfortunately, this optimization does
not work well in all cases. Due to the reason that each pushed
rule requires an individual lookup during decision-tree
searching, the overall number of memory access may be
increased compared with original algorithms. As illustrated in
Figure 5, the overall memory accesses overhead the worst-case
tree depth significantly, with up to 10 times in some cases.

Besides, some other optimizations, such as rule overlap and
region compaction, can further reduce memory consumptions
for decision-trees. However, these optimizations may increase
the difficulties for rule updates. Take Figure 1c as an example,
with the adoption of rule overlap, rule R3 and R4 should be
removed from Leaf 8/9, as they are completely covered by
another rule with a higher priority (i.e., R2 and R1). However,
it is always easy to throw away, but difficult to pick up. If rule
R1 or R2 is deleted from classifiers, a reconstruction of the
decision-tree is needed since this delete operation may lead to
confusion in Leaf 8/9.

Rule Set Partitioning. Separating rules into subsets can
reduce rule overlapping in each subset, which in turn improves
the problem of rule replication in each individual decision-tree.
EffiCuts is the most representative algorithm using rule set
partitioning. Figure 6 and Figure 7 show the effectiveness as
well as the influence for partitioned EffiCuts, compared with
un-partitioned HyperCuts. As shown in Figure 6, EffiCuts
improves rule replications dramatically, which in turn
significantly reduce memory consumptions. However, this
aggressive partitioning method also brings trouble to lookup
performance illustrated in Figure 7. We can see that there are
still a lot of sub-trees generated by EffiCuts even with the
adoption of sub-tree merging option, which may lead to a
larger overall memory accesses.

1

10

100

1000

seed-acl (752 rules) seed-fw (269 rules) seed-ipc (1550 rules)

HyperCuts-8, pushup=0 HyperSplit-1 HyperSplit-8

Figure 2. Evaluation of rule replication factor for seed rule sets

1

10

100

1000

10000

HyperCuts-8, pushup=0 HyperSplit-8

Figure 3. Evaluation of rule replication factor for different rule sets

Recently, HybridCuts proposes an advanced partitioning
which can reduce the number of sub-trees from 2F to F+1for F-
tuple classifiers, and this number is further reduced to 3 with an
optimization for typical 5-tuple rules. SmartSplit, another
partitioning based scheme, separates rules into at most 4
subsets based on a memory estimator. However, both these
partitioning schemes are based on the observations about
address fields for typical 5-tuple classifiers, which seriously
limit their adaptability for general flow tables.

 Cutting or Splitting? Recently, more and more researchers
have realized that a simple cutting or splitting is not enough for
more and more complex classifiers, and a combination of them
is a practical choice to reduce rule replications. But most of
current schemes suffer a poor scalability from classifier size.

EffiCuts, employs HyperCuts with an equi-dense cutting
(i.e., splitting) option to build sub-trees for partitioned subsets.
HybridCuts, as suggested by its name, makes use of a
combination of one- and multi-dimensional cuttings for tree
constructions. Instead of using these predetermined cutting or
splitting, SmartSplit introduces a memory estimator to make
use of cutting or splitting dynamically. These combinations are
far from achieving optimal effectiveness. From experimental
evaluations in Section V, we can conclude that the performance
of these algorithms drop quickly with the size of rule sets
increases. One of the primary reasons is that, all these schemes
simply adopt HyperCuts or HyperSplit during the construction
of the decision-trees, which may seriously limit their scalability
for larger classifiers. Actually, with the increase of the size of
the classifier, we will encounter more and more overlapped
rules or quasi orthogonal rules in partitioned subsets, which
may affect the overall performance significantly.

Thus, these existing efforts focus on reducing rule
replications while sacrificing search or update performance.

IV. THE PROPOSED ALGORITHM

In this section, we first introduce ideas behind the design of
scalable packet classification. After that, we make several
important observations on typical 5-tuple rule sets as well as

OpenFlow based rule tables, which can help us to separate
rules into a very few subsets. Finally, we describe a practical
framework called CutSplit to exploit the benefits of cutting and
splitting techniques adaptively. By addressing the central
problem caused by uncontrollable rule replications suffered by
the major efforts, CutSplit not only pushes the performance of
algorithmic packet classification more closely to hardware-
based solutions, but also reduces the memory consumption to a
practical level. Moreover, our work achieves low pre-
processing time for rule updates, a problem that has long been
ignored by previous decision-trees, but is becoming more
relevant in the context of SDN due to frequent updates of rules.

A. Ideas

According to above reviews, cutting can separate searching
space into smaller sub-spaces quickly for faster classification,
but it suffers from serious rule replications and implicit worst-
case search performance. In contrast, splitting can significantly
alleviate rule replication problem and offer a bounded worst-
case search performance, but its binary splitting worsens the
overall search performance. Therefore, to foster the strengths
and circumvent the weaknesses of cutting and splitting, the
idea directly perceived is to combine the following two
strategies:

 Faster Pre-Cutting: Cutting based separating on the
searching space, which can reach any smaller sub-
spaces with a very few steps.

 Explicit Post-Splitting: Splitting based searching on
sub-spaces, which can achieve deterministic worst-case
search bound and lower memory consumption.

Figure 8 shows the framework of the following CutSplit.
However, in order to design scalable algorithms to meet above
goals, effective combination of these two ideas still faces
several difficulties and challenges:

 For memory storage: Since rule overlapping can lead
to serious rule replications, how to alleviate this
problem during cutting and splitting?

Figure 4. Effectiveness of pushing-upwards for HyperCuts-8

Figure 5. Influence of pushing-upwards for HyperCuts-8

1

10

100

1000

10000

seed-acl (752 rules) seed-fw (269 rules) seed-ipc (1550 rules)

HyperCut_MC EffiCuts_MC HyperCut_RRF EffiCuts_RRF

MC: Memory Consumption (Byte/rule)
RRF: Rule Replication Factor

Figure 6. Effectiveness of rule set partitioning for EffiCuts-8

0

20

40

60

80

100

120

140

160

seed-acl (752 rules) seed-fw (269 rules) seed-ipc (1550 rules)

HyperCuts_MA EffiCuts_MA

#sub-tree: Number of sub-trees after merging in EffiCuts

#sub-tree=5

#sub-tree=8

#sub-tree=9

MA: Number of overall memory access

Figure 7. Influence of rule set partitioning for EffiCuts-8

 For memory access: Since prior cuttings have no
explicit worst-case bound for search, how to guarantee
the worst-case bound for pre-cuttings? Besides, if
partitioning employed, in order to reduce overall
memory accesses, how to generate rule subsets as few
as possible?

 For rule updates: Since the awareness of the
importance of optimizations alleviating rule
overlapping problems comes into consideration, how
to minimize impacts on update?

The answers to these questions are key ideas in this paper.
Our solution can be summarized as the following three steps:

 Step 1: Partitioning based on a very few small fields.
In order to reduce rule overlapping and number of rule
subsets, we separate rules into subsets based on their
characteristics shared in a very few fields.

 Step 2: Modified cuttings without prior optimizations.
After partitioning of rule sets, we get a set of fields for
each subset, where a set of simpler but more effective
cuttings can be applied for faster classification.

 Step 3: Combination of pre-cutting & post-splitting.
Thanks to the clever partitioning and the first stage
faster cuttings, we can obtain any sub-space containing
much less rules without the trouble of serious rule
replications, which enables a simpler binary splitting
for subsequent processing with bounded worst-case
performance. Besides, rule replication only appear at
the second splitting stage, leading to high performance
for incremental updates.

B. Observations & Partitioning for Rule Sets

Classifier rules in real-life applications have structural
redundancies and several inherent characteristics that can be
exploited to reduce the complexity [19][27][28][31][33][38].
Thus, we use the publicly available ClassBench and
OpenFlow-like rule tables for study to make observations on
common characteristics of rule sets. The two OpenFlow-like
rule tables are generated based on 216 real-life rules from
enterprise customers. We first give a few definitions, then we
present the key observations related to the following rule set
partitioning.

1) Definitions

Given an N-dimensional rule R = (F1, ... Fi, ... FN) and a

threshold value vector T = (T1, ... Ti, ... TN), where i ∈ {1, 2, ...

N}, we give some definitions for field Fi as follows:

 Fi is a big field: the range length of field Fi > threshold
value Ti.

 Fi is a small field: the range length of field Fi ≤

threshold value Ti.

Based on above definitions for rule field Fi, we further give
some definitions for rule R as follows:

 R is a big rule: i {1, 2, ... N}, Fi in R is a big field.

 R is a small-k rule: R contains at least k small fields.

For the sake of convenience in writing, we use a
logarithmic vector T’ to represent T equivalently. For example,
if we set Ti = 216, then index logarithmic Ti’ = 16.

2) At Least One Small Field & Very Few Small Fields

Based on above definitions, we make several observations
for a number of rule sets. For example, Figure 9 shows the ratio
of big rules for IP Chains (IPC) rule set. It is clear that the ratio
of big rules is very low even under very demanding thresholds.
Due to length limitation, more results for Access Control Lists
(ACL) and Firewalls (FW) rule sets will be available in [40].
Table III shows statistical results for 5-tuple rule sets and
OpenFlow-like rule tables. Clearly, this observation is still
effective for OpenFlow-like rule tables. From Table III, we can
also draw a conclusion that the vast majority of rules have at
least one as well as a very few number of small fields.

3) Rule Set Partitioning

Based on above observations, we propose a partitioning
algorithm to separate rules into a few subsets. The purpose of
our partitioning is to obtain a few subsets without duplicates
among each other. For each subset, all contained rules should
share a common characteristic for a set of rule fields: small
field. Next, we introduce a simple heuristic as follows:

--Step1: Remove big rules. Since the number of big rules is
negligible, we can simply apply HyperSplit for these rules.

--Step2: Select a few distinct fields. Count the number of
distinct small field in each field and pick up a few highest ones,
where the vast majority (e.g., >95%) rules contain at least one
small field in selected fields. For the remaining rules, we can
simple merge them into above big rules.

root node

smaller sub-
space i with
fewer rules

Pre-Cutting

leaf nodes

Post-Splitting

smaller sub-
space n with
fewer rules

smaller sub-
space 1 with
fewer rules

leaf nodes

Post-Splitting

leaf nodes

Post-Splitting

... ...

Figure 8. The framework of CutSplit

Figure 9. The ratio of big rules for seed-ipc rule set

--Step3: Fields-wise partitioning. Assume M fields have
been selected for F-tuple rule sets. We categorize rules based
on field length (i.e., big or small) in all selected fields, leading
to at most 2M-1 subsets. This partitioning is different from
EffiCuts from two perspectives: fewer fields and more flexible
definition about small/big field.

--Step4: Selective subset merging. For subsets containing a
very few rules, we can merge these rules into other subsets that
have fewer small fields. Due to the consideration on its
relevance and space limitation, we do not elaborate on this
algorithm in this paper.

Take rule set in Table I as an example, we first remove R5
into a big rule subset, after then, we calculate the number of
distinct small fields in each field and pick up ip_src & ip_dst as
two most distinct fields. Thus, we can partition the rule set into
four subset: big_subset={R5}, (smallip_src, smallip_dst)={R1},
(bigip_src, smallip_dst)= {R3} and (smallip_src, bigip_dst)={R2, R4}.
Finally, we can merge (smallip_src, smallip_dst) with (bigip_src,
smallip_dst) for a new subset (NULL, smallip_dst)={R1, R3}. Thus,
three subsets are generated for the sample rule set: {R5}, {R2,
R4} and {R1, R3}.

C. CutSplit: Pre-Cutting & Post-Splitting

The rationale behind above strategy of rule set partitioning
is simple: by grouping rules that are small in the same fields,
we get a few dimensions in the space where the extensive rule
replications bothering traditional cuttings by wide overlaps are
significantly reduced. Moreover, subsets partitioned by this
way enable simple and space-efficient fixed-cutting algorithms.
The framework of CutSplit is shown in Figure 8. Next, we
describe Pre-Cutting and Post-Splitting respectively.

Stage 1: Faster Pre-Cutting. For partitioned rule subsets,
some simpler and more space-efficient cuttings can be applied
to small fields, separating searching space into much smaller
sub-spaces in a few steps. Figure 10 shows two cutting
examples for two sample rule sets with different number of
small fields. Although the two cuttings in Figure 10 share some
similarities to HiCuts and HyperCuts, they are different from
the two classical techniques in two aspects: fixed cutting fields
and no optimizations. Compared with FiCuts in HybridCuts,
our multi-field cuttings are more adaptive to rule sets with
more than one small field. The cutting processes stop when the
number of contained rules is smaller than a pre-defined value
binth or the sub-spaces reach the threshold of sub-space which
is defined by threshold values of each small field. Take Figure
10 as an example, assume binth < 4 and the threshold value
vector T = (4, 4), the first stage cuttings should stop in gray

areas respectively and resort to the next stage methods. It is
easy to see that rule replication cannot appear in the pre-
cutting stage, as all cuttings are conducted in small fields and
stop at the threshold of sub-spaces.

Stage 2: Explicit Post-Splitting: After the first stage
cuttings, the searching space has been separated into much
smaller sub-spaces, where each sub-space contains much fewer
rules compared with the original rule set. Table V in Section V
shows the number of rules after pre-cuttings for 12 rule sets
containing 100K rules, it is clear that the number of rules in
sub-space is quite small after pre-cuttings. Thus, based on our
above review and analysis, HyperSplit can be well applied for
the following decision-tree construction.

V. EXPERIMENTAL RESULTS

In this section, we present the performance results of
CutSplit with other representative decision-tree techniques:
HyperCuts, HyperSplit, EffiCuts, HybridCuts and SmartSplit.
We are very grateful to the authors of these algorithms, their
open source codes and selfless personal help enable us to make
a fair and justifiable comparison. As a response, our
implementation of CutSplit is also publicly available in [40].
Based on key metrics in Section III, we evaluate our algorithm
from memory consumption, memory access and pre-processing
time respectively. All experiments are run on a machine with
AMD A8-5600K CPU@3.60GHz and 8G DRAM. The
operation system is Ubuntu 14.04.

A. Memory Consumption

Figure 11 shows the memory consumption of data structure
for different decision-trees. It is clear that the memory
consumption of HyperCuts and HyperSplit increase
dramatically with the size of rule sets. For other four
algorithms using rule set partitioning, the memory consumption
scale well with the size of rule sets. This scalability is also stay
for larger rule sets in Figure 13. As shown in Figure 13,
CutSplit achieves a significant memory reduction compared
with EffiCuts, ranging from 3 times to 20 times, with an
average reduction of over 10 times. Compared with
HybridCuts and SmartSlit, CutSplit also reduces memory
consumption from 20% to 90%, with an average reduction of
65% and 50% respectively.

Table III. Statistical results for 5-tuple & OpenFlow-like rules (Assuming

the value of Ti is half of range length in field Fi)

Rule set(#rules)
Number of

big rules

Number of small-k rules

k=1 k=2 k=3 k=4 k≥5

seed-acl(752) 3 749 739 425 0 0

seed-fw(269) 4 265 218 17 2 0

seed-ipc(1550) 2 1548 1472 789 5 0

openflow-1(716)

0 716 708 655 426 0

openflow-2(864)

0 864 852 761 429 0

Field X

Fi
el

d
 Y

1111

0000

1111

0000

Fixed Cutting-X

 Field X

Fi
el

d
 Y

1111

0000

1111

0000

Fixed
 C

u
ttin

gs-Y

Fixed Cuttings-X

 (a). (small, NULL) subset (b). (small, small) subset

Figure 10. Simpler and more space-efficient Pre-Cuttings on small fields

B. Memory Access

Figure 12 and Figure 14 show the performance in terms of
the number of memory access for different algorithms. It is
clear that CutSplit performs much better than other algorithms.
As shown in Figure 14, CutSplit achieves an average of 3x
speed-up compared with EffiCuts. Compared with HybridCuts
and SmartSlit, CutSplit also achieves an average of 0.2x and
0.6x speed-up respectively. In addition, since the worst-case
memory access can be guaranteed both in Pre-Cutting stage
and Post-Splitting stage, the worst-case performance for
CutSplit can be bounded.

C. Pre-processing time

1) Pre-processing time for decision-tree construction

Pre-processing time of EffiCuts, HybridCuts, SmartSplit
and CutSplit are shown in Table IV. Compared to EffiCuts and
SmartSplit, CutSplit runs about 1000 times faster when
handling the same rule sets on average. Compared to
HybridCuts, CutSplit also runs about 50 times faster on
average. For most rule sets with 100K rules, CutSplit can
complete decision-tree construction in few seconds, while most
existing algorithms usually takes several hours. Thus, CutSplit
is more practical for online updating.

2) More details about splitting based sub-trees in CutSplit

As rule replications only appear in post-splitting stage,
incremental rule updates can be easily implemented in CutSplit.
Take Figure 10 as an example. If we need to delete a rule from
gray areas, only four rules in gray areas may be influenced,
thus, we can simply apply HyperSplit to rebuild a sub-tree for
remaining three rules. In contrast, if we need to add a rule to
the rule set, we just need to identify its small fields and put it
into a right sub-space. Thus, the most time consuming part of
incremental rule update for CutSplit is the post-splitting stage.
We evaluate all sub-trees constructed by HyperSplit and the
results are given in Table V. As shown in this table, the
average number of influenced rule is very small (i.e., 144 for
100K rules) and the average pre-processing time for sub-trees
reconstruction is 50us.

Table IV. Pre-processing time for decision-tree construction (s)

Rule set EffiCuts HybridCuts SmartSplit CutSplit

ACL1_100K 4784.4 183.1 632.5 11.7

ACL2_100K 8338.4 91.0 427.4 4.1

ACL3_100K 8453.6 148.6 6403.7 2.6

ACL4_100K 8232.6 161.8 3336.1 3.4

ACL5_100K 8905.3 138.5 2695.9 3.0

FW1_100K 4250.7 165.1 1392.1 3.0

FW2_100K 2842.2 161.9 1652.9 2.5

FW3_100K 4281.2 187.8 3855.4 3.0

FW4_100K 1662.1 280.3 4553.6 3.5

FW5_100K 3778.4 179.2 3212.7 2.7

IPC1_100K 8615.0 151.5 3133.4 2.6

IPC2_100K 6070.4 229.6 3187.9 2.6

MEAN 5851 173 2874 3.7

Table V. More details about splitting based sub-trees in CutSplit

Rule set
Number of rules Pre-processing time (us)

Worst-case Average Worst-case Average

ACL1_100K 344 17.1 569 45.6

ACL2_100K 473 25.3 6975 125.1

ACL3_100K 31 10.4 207 21.3

ACL4_100K 320 18.7 8693 168.7

ACL5_100K 93 12.8 683 28.9

FW1_100K 193 16.4 2664 71.8

FW2_100K 10 9.4 28 14.8

FW3_100K 118 14.2 1068 43.2

FW4_100K 10 9.0 23 12.9

FW5_100K 111 14.4 869 38.5

IPC1_100K 14 9.7 57 18.1

IPC2_100K 10 9.6 129 15.1

MEAN 144 14 1830 50

1

10

100

1000

10000

ACL_100 ACL_1K ACL_5K ACL_10K FW_100 FW_1K FW_5K FW_10K IPC_100 IPC_1K IPC_5K IPC_10K

HyperCuts HyperSplit EffiCuts HybridCuts SmartSplit CutSplit

binth=8, T'(sa,da)=(16,16)

Figure 11. Memory consumption pre rule for small rule sets (Byte/rule)

0

20

40

60

80

100

120

ACL_100 ACL_1K ACL_5K ACL_10K FW_100 FW_1K FW_5K FW_10K IPC_100 IPC_1K IPC_5K IPC_10K

HyperCuts HyperSplit EffiCuts HybridCuts SmartSplit CutSplit

binth=8, T'(sa,da)=(16,16)

Figure 12. Memory access for small rule sets

0

5

10

15

20

25

A
C

L1
_

1
0

0
K

A
C

L2
_

1
0

0
K

A
C

L3
_

1
0

0
K

A
C

L4
_

1
0

0
K

A
C

L5
_

1
0

0
K

FW
1

_
1

0
0

K

FW
2

_
1

0
0

K

FW
3

_
1

0
0

K

FW
4

_
1

0
0

K

FW
5

_
1

0
0

K

IP
C

1
_

1
0

0
K

IP
C

2
_

1
0

0
K

EffiCuts HybridCuts SmartSplit CutSplit

binth=8, T'(sa,da)=(16,16)

Figure 13. Memory consumption for larger rule sets (MB)

0

20

40

60

80

100

120

140

A
C

L1
_

1
0

0
K

A
C

L2
_

1
0

0
K

A
C

L3
_

1
0

0
K

A
C

L4
_

1
0

0
K

A
C

L5
_

1
0

0
K

FW
1

_
1

0
0

K

FW
2

_
1

0
0

K

FW
3

_
1

0
0

K

FW
4

_
1

0
0

K

FW
5

_
1

0
0

K

IP
C

1
_

1
0

0
K

IP
C

2
_

1
0

0
K

EffiCuts HybridCuts SmartSplit CutSplit

binth=8, T'(sa,da)=(16,16)

Figure 14. Memory access for larger rule sets

VI. CONCLUSION

In this paper, we first conduct some in-depth review on
issues that led to the unsuccess of the major decision-tree
techniques for scalable packet classifications. With the insights
obtained, we propose a practical framework called CutSplit,
which can exploit the benefits of cutting and splitting
techniques adaptively. By addressing the central problem
caused by uncontrollable rule replications suffered by the
major efforts, CutSplit not only pushes the performance of
algorithmic packet classification more closely to hardware-
based solutions, but also reduces the memory consumption to a
practical level. Moreover, CutSplit achieves low pre-processing
time for rule updates, a problem that has been ignored by most
previous decision-trees. Compared with EffiCuts, experimental
results show that, CutSplit achieves a memory reduction over
10 times, as well as 3x improvement on performance in terms
of the number of memory access on average.

ACKNOWLEDGMENT

We appreciate the help from Balajee Vamanan and Jun Li
in terms of technical realization. We would also like to thank
Ru Jia, Qiang Su and Kaixuan Xing for kindly accepting to run
several simulations. This work is supported in part by the
National Keystone R&D Program of China (No.
2017YFB0803204 & 2016YFB0800101), by Natural Science
Foundation of China (NSFC) (No. 61671001 & 61725206), by
Guangdong Key Program (GD2016B030305005) and by
Shenzhen Research Programs (JSGG20150331101736052,
ZDSYS201603311739428, JCYJ20170306092030521 &
JCYJ20150629144717142).

 REFERENCES

[1] N. McKeown, et al., “OpenFlow: enabling innovation in campus
networks,” in ACM SIGCOMM, 2008.

[2] D. E. Taylor, “Survey and Taxonomy of Packet Classification
Techniques,” ACM Computing Surveys, 37(3):238-275, 2005.

[3] H. J. Chao and B. Liu, “High performance switches and routers,” John
Wiley & Sons, 2007.

[4] C. R. Meiners, A. X. Liu and E. Torng, “Hardware Based Packet
Classification for High Speed Internet Routers,” Springer, 2010.

[5] A. X. Liu, C. R. Meiners and Y. Zhou, “All-match based complete
redundancy removal for packet classifiers in TCAMs,” in IEEE
INFOCOM, 2008.

[6] A. X. Liu, C. R. Meiners and E. Torng, “TCAM Razor: A systematic
approach towards minimizing packet classifiers in TCAMs,” IEEE/ACM
Transactions on Networking, 18(2):490-500, 2010.

[7] R. Wei, Y. Xu and H. J. Chao, “Block Permutations in Boolean Space to
Minimize TCAM for Packet Classification,” in IEEE INFOCOM, 2012.

[8] A. X. Liu, C. R. Meiners and E. Torng, “Packet classification using
binary Content Addressable Memory,” in IEEE INFOCOM, 2014.

[9] H. Liu, “Efficient mapping of range classifier into ternary-CAM,” in
IEEE Hot Interconnects, 2002.

[10] K. Lakshminarayanan, A. Rangarajan, and S. Venkatachary, “Algorithms
for advanced packet classification with ternary CAMs,” in ACM
SIGCOMM, 2005.

[11] H. Che, Z. Wang, K. Zheng and B. Liu, “DRES: Dynamic range
encoding scheme for TCAM coprocessors,” IEEE Transactions on
Computers, 57(7):902-915, 2008.

[12] A. Bremler-Barr and D. Hendler, “Space-efficient TCAM-based
Classification Using Gray Coding,” in IEEE INFOCOM, 2007.

[13] O. Rottenstreich, I. Keslassy, A. Hassidim, H. Kaplan and E. Porat, “On
finding an optimal TCAM encoding scheme for packet classification,” in
IEEE INFOCOM, 2013.

[14] E. Spitznagel, D. E. Taylor and J. Turner, “Packet classification using
extended TCAMs,” in IEEE ICNP, 2003.

[15] Y. Ma and S. Banerjee, “A Smart Pre-Classifier to Reduce Power
Consumption of TCAMs for Multi-dimensional Packet Classification,” in
ACM SIGCOMM, 2012.

[16] B.Vamanan and T.Vijaykumar, “TreeCAM: Decoupling Updates and
Lookups in Packet Classification,” in ACM CoNEXT, 2011.

[17] B. Pfaff, et al., “The Design and Implementation of Open vSwitch,” in
USENIX NSDI, 2015.

[18] S. Yingchareonthawornchai, J. Daly, A. X. Liu and E. Torng, “A sorted
partitioning approach to high-speed and fast-update OpenFlow
classification,” in IEEE ICNP, 2016.

[19] K. Kogan, S. Nikolenko, O. Rottenstreich, W. Culhane and P. Eugster
“SAX-PAC (Scalable And eXpressive PAcket Classification),” in ACM
SIGCOMM, 2014.

[20] C. L. Hsieh and N. Weng, “Many-field packet classification for
software-defined networking switches,” in ACM/IEEE ANCS, 2016.

[21] X. Li and Y. Lin, “TaPaC: A TCAM-Assisted Algorithmic Packet
Classification with Bounded Worst-Case Performance,” in IEEE
GLOBECOM, 2016.

[22] B. Vamanan, G. Voskuilen, and T. Vijaykumar, “EffiCuts: Optimizing
Packet Classification for Memory and Throughput,” in ACM
SIGCOMM, 2010.

[23] J. Fong, X. Wang, Y. Qi, J. Li and W. Jiang, “ParaSplit: A Scalable
Architecture on FPGA for Terabit Packet Classification,” in IEEE Hot
Interconnects, 2012.

[24] W. Li and X. Li, “HybridCuts: A scheme combining decomposition and
cutting for packet classification,” in IEEE Hot Interconnects, 2013.

[25] P. He, G. Xie, K. Salamatian and L. Mathy, “Meta-Algorithms for
Software based Packet Classification,” in IEEE ICNP, 2014.

[26] W. Jiang and V. K. Prasanna, “Large-scale wire-speed packet
classification on FPGAs,” in ACM/SIGDA FPGA, 2009.

[27] P. Gupta and N. McKeown, “Packet Classification using Hierarchical
Intelligent Cuttings,” in IEEE Hot Interconnects, 1999.

[28] S. Singh, F. Baboescu, G. Varghese and J. Wang, “Packet Classification
using Multidimensional Cutting,” in ACM SIGCOMM, 2003.

[29] Y. Qi, L. Xu, B. Yang, Y. Xue and J. Li, “Packet Classification
Algorithms: From Theory to Practice,” in IEEE INFOCOM, 2009.

[30] D. E. Taylor and J. S. Turner, “Classbench: A Packet Classification
Benchmark,” in IEEE INFOCOM, 2005.

[31] V. Srinivasan, G. Varghese, S. Suri and M. Waldvogel, “Fast and
Scalable Layer Four Switching,” in ACM SIGCOMM, 1998.

[32] T. V. Lakshman and D. Stiliadis, “High-speed Policy-based Packet
Forwarding Using Efficient Multi-dimensional Range Matching,” in
ACM SIGCOMM, 1998.

[33] P. Gupta and N. McKeown, “Packet Classification on Multiple Fields,”
in ACM SIGCOMM, 1999.

[34] D. E. Tayor and J. S. Turner, “Scalable Packet Classification using
Distributed Crossproducting of Field Labels,” in IEEE INFOCOM,
2005.

[35] V. Srinivasan, S. Suri and G. Varghese, “Packet Classification using
Tuple Space Search,” in ACM SIGCOMM, 1999.

[36] J. Daly and E. Torng, “TupleMerge: Building Online Packet Classifiers
by Omitting Bits,” in IEEE ICCCN, 2017.

[37] M. Varvello, R. Laufer, F. Zhang and T. V. Lakshman, “Multi-Layer
Packet Classification with Graphics Processing Units,” in ACM
CoNEXT, 2014.

[38] F. Baboescu, S. Singh and G. Varghese, “Packet Packet Classification
for Core Routers: Is there an alternative to CAMs?” in IEEE INFOCOM,
2003.

[39] T. Yang, A. X. Liu, Y. Shen Q. Fu, D. Li and X. Li, “Fast OpenFlow
Table Lookup with Fast Update,” in IEEE INFOCOM, 2018.

[40] http://www.wenjunli.com/CutSplit/.

