
1

Tuple Space Assisted Packet Classification with
High Performance on Both Search and Update

Wenjun Li, Tong Yang, Ori Rottenstreich, Xianfeng Li, Gaogang Xie, Hui Li,
Balajee Vamanan, Dagang Li, and Huiping Lin

Abstract—Software switches are being deployed in SDN to en-
able a wide spectrum of non-traditional applications. The popular
Open vSwitch uses a variant of Tuple Space Search (TSS) for
packet classifications. Although it has good performance on rule
updates, it is less efficient than decision trees on lookups. In this
paper, we propose a two-stage framework consisting of hetero-
geneous algorithms to adaptively exploit different characteristics
of the rule sets at different scales. In the first stage, partial
decision trees are constructed from several rule subsets grouped
with respect to their small fields. This grouping eliminates rule
replications at large scales, thereby enabling very efficient pre-
cuttings. The second stage handles packet classification at small
scales for non-leaf terminal nodes, where rule replications within
each subspace may lead to inefficient cuttings. A salient fact is
that small space means long address prefixes or less nesting levels
of ranges, both indicating a very limited tuple space. To exploit
this favorable property, we employ a TSS-based algorithm for
these subsets following tree constructions. Experimental results
show that our work has comparable update performance to TSS
in Open vSwitch, while achieving almost an order-of-magnitude
improvement on classification performance over TSS.

Index Terms—Packet Classification, SDN, OpenFlow, Open
vSwitch, Virtualization.

I. INTRODUCTION

Manuscript received April 15, 2019; revised February 3, 2020; ac-
cepted March 2, 2020. This work was supported in part by the Na-
tional Keystone Research and Development Program of China under Grant
2017YFB0803204, in part by the PCL Future Regional Network Facilities
for Large-scale Experiments and Applications under Grant PCL2018KP001,
in part by the NSFC under Grant 61671001 and Grant 61725206, in part
by the Research and Development Key Program of Guangdong under Grant
2019B010137001, and in part by the Shenzhen Research Program under
Grant KQJSCX20180323174744219, Grant JCYJ20190808155607340, Grant
JSGG20170824095858416, and Grant JCYJ20170306092030521. This paper
was presented in part at the IEEE INFOCOM, HI, USA, April 19, 2018 [1].

W. Li is with the School of Electronic and Computer Engineering, Peking
University, Shenzhen 518055, China, and also with Peng Cheng Laboratory,
Shenzhen 518055, China (e-mail: wenjunli@pku.edu.cn).

T. Yang and H. Lin are with the Department of Computer Science and
Technology, Peking University, Beijing 100871, China (e-mail: yangtonge-
mail@gmail.com; phoenixrain@pku.edu.cn).

O. Rottenstreich is with the Department of Computer Science and the
Department of Electrical Engineering, Technion, Haifa 32000, Israel (e-mail:
or@technion.ac.il).

X. Li is with the International Institute of Next Generation Internet, Macau
University of Science and Technology, Macau, and also with Peng Cheng
Laboratory, Shenzhen 518055, China (e-mail: xifli@must.edu.mo).

G. Xie is with the Computer Network Information Center, Chinese
Academy of Sciences, Beijing, 100190, China (e-mail: xie@cnic.cn).

H. Li and D. Li are with Shenzhen Graduate School, Peking University,
Shenzhen 518055, China, and also with Peng Cheng Laboratory, Shenzhen
518055, China (e-mail: lih64@pku.edu.cn, dgli@pku.edu.cn).

B. Vamanan is with the Department of Computer Science, University of
Illinois at Chicago, Chicago, IL 60607, USA (e-mail: bvamanan@uic.edu).

SOFTWARE virtual switches are becoming an important
part of virtualized network infrastructures. Backed by

SDN, virtual switches enable many non-traditional network
functionalities like flexible resource partitioning and real-time
migration. Despite their advantages on flexibility and low-
cost, software switches have a performance concern. The
prominent Open vSwitch enforces forwarding policies with
OpenFlow [2] table lookups, which is essentially a multi-
field packet classification problem [3], [4]. As an exten-
sively studied bottleneck, packet classification in physical
switches still relies on expensive TCAMs because algorithmic
solutions implemented in software can hardly satisfy wire-
speed forwarding in traditional network infrastructures [5]–
[14]. With the advent of SDN and NFV, efficient algorithmic
solutions using commodity memories such as DRAM/SRAM
are becoming attractive again.

The first step towards meeting this revitalized demand
is an understanding of the past research. Among existing
algorithmic packet classification research, decision tree [15]–
[25] and Tuple Space Search (TSS) [26]–[28] are two major
approaches. In decision tree-based schemes, the geometric
view of the packet classification problem is taken and a
decision tree is built. They work by recursively partitioning
the searching space into smaller subspaces until less than a
predefined number of rules are contained by each subspace.
In case a rule spans multiple subspaces, the problem of
rule replication happens and a rule copy is needed for each
overlapped subspace. This rule replication problem becomes
especially serious during the cutting operations at small scales,
where small rules across narrow spaces are to be separated
from their overlapped large rules. Thus, decision tree-based
schemes achieve fast lookup speed on packet classification,
but cannot support fast updates due to the notorious rule
replication problem.

Unlike traditional packet classification, OpenFlow has a
much higher demand for updates, which further exacerbates
the problem and makes decision tree algorithms inapplicable in
this context [28], [29]. In contrast, TSS partitions rules into a
set of hash tables (i.e., tuple space) with respect to their prefix
length. Thus, rule replication never happens in TSS-based
schemes, thereby enabling an average of one memory access
for each rule update. As a result, the popular Open vSwitch
implements a variant of TSS for its flow table lookups [28].
The primary reason is its good support for fast incremental
rule updates, which is an important metric for SDN switches.
Despite their advantages on fast updates, TSS-based schemes
have a performance concern. For each incoming packet, TSS

2

TABLE I. An example OpenFlow 1.0 classifier

Rule Ingress Ether Ether Ether VLAN VLAN IP IP IP IP TCP/UDP TCP/UDP Actionid port src dst type id priority src dst proto ToS bits Src Port Dst Port
R1 3 * * 2048 * * 206.159.213.125/32 101.152.182.8/30 0x06f/0xff 0 1024 : 65535 * action1
R2 3 * * 2048 * * 15.25.70.8/30 * * 0 * 0:1599 action2
R3 5 * * 2048 * * * 18.152.125.32/30 0x11/0xff 1 1024 : 65535 1024 : 65535 action3
R4 5 * * 2048 * * 206.159.213.125/32 * 0x06/0xff 1 * 80 action4
R5 * * * * * * * * * * * * action5

requires searching on every tuple, because the final matching
is the one with the highest priority of matched rules from all
tuples. This problem is especially serious for working on large
space due to serious tuple expansion problem.

To achieve fast lookup and update at the same time, we pro-
pose CutTSS as shown in Figure 1, which fosters the strengths
and circumvents the weaknesses of decision tree and TSS-
based schemes. To the best of our knowledge, this is the first
solution that can keep the advantages of these two schemes:
fast lookup and fast update. First, we adopt cutting techniques
to build decision trees at large scales, so that each packet can
shrink its searching space in a few steps for fast lookups.
Second, to improve the update performance, we introduce
TSS-based schemes to assist decision tree construction at small
scales. Overall, CutTSS exploits the strengths of both decision
tree and TSS to circumvent their respective weaknesses.

To refine the framework of CutTSS, a two-stage framework
consisting of heterogeneous algorithms is proposed. During the
first stage, partial decision trees are constructed from several
subsets grouped in their respective small fields (i.e., long prefix
or narrow range), and leave some non-leaf terminal nodes
(i.e., terminal nodes after pre-cuttings which contain rules
more than the predefined number of rules for leaf nodes, as
illustrated in Figure 6) for more efficient handling by TSS-
based schemes. This grouping eliminates rule overlapping
at large scales, thereby enabling very efficient pre-cuttings
without any rule replications. The second stage handles packet
classification at small scales for rules in non-leaf terminal
nodes, where overlapping of rules within each subspace may
become common that will lead to inefficient cuttings due
to rule replications. Fortunately, a small space means long
address prefixes or less nesting levels of ranges, both indi-
cating a very limited tuple space. Based on this property, we
employ a TSS-based algorithm called PSTSS [28] for rules
in these subsets to facilitate tree constructions. Therefore, by
exploiting the benefits of decision tree and TSS techniques
adaptively, CutTSS not only offers fast updates and linear
memory, but also pushes the performance of algorithmic
packet classification on par to hardware-based solutions. The
main contributions of this paper include the following aspects:
• A scalable rule set partitioning algorithm based on the

observation that most rules have at least one small field
spanning across a narrow space, so the rule set can be
efficiently partitioned into a few non-overlapping subsets.

• A set of novel cutting algorithms that exploit the global
characteristics of the partitioned subset of rules, so that
the rules can be partitioned into smaller subsets without
rule replications.

• A two-stage framework combining decision tree and
TSS techniques, which can adaptively exploit different

Root node for the
large whole space

Smaller sub-
space i with
fewer rules

Pre-Cutting

Tuples

Post-TSS

Smaller sub-
space n with
fewer rules

Smaller sub-
space 1 with
fewer rules

TuplesTuples

... ...

Post-TSS Post-TSS

Fig. 1. The initial framework of CutTSS.

characteristics of the rule sets at different scales.
We evaluate our algorithm using ClassBench [30], and the

results show that CutTSS is able to produce a very small
number of shorter trees with linear memory consumption even
for rule sets up to 100k entries. Compared to the TSS algo-
rithm in Open vSwitch, CutTSS achieves similar update per-
formance, but outperforms TSS significantly on classification
performance, achieving almost an order of magnitude improve-
ment on average. Our implementation of CutTSS is publicly
available on our website (http://www.wenjunli.com/CutTSS).

The rest of the paper is organized as follows. In Section
II, we first briefly summarize the related work. After that, we
make a set of observations and present the technical details
of CutTSS in Section III. Section IV provides experimental
results. Finally, conclusions are drawn in Section V.

II. BACKGROUND AND RELATED WORK

In this section, we first review the background and some
research efforts about the packet classification problem. After
that, we briefly describe two major threads of algorithmic
approaches: decision tree-based and tuple space-based packet
classification. Finally, we give some summaries.

A. The Packet Classification Problem

The purpose of packet classification is to enable differ-
entiated packet treatment according to a predefined packet
classifier. A packet classifier is a set of rules, with each
rule R consisting of a tuple of F field values (exact value,
prefix or range) and an action (e.g., drop or permit) to be
taken in case of a match. The rules in the classifier are
often prioritized to resolve potential multiple match scenarios.
Packet classification has been well studied for two decades,
but most of them focused on high-speed lookups, with very
little consideration on the performance of rule updates. How-
ever, unlike traditional packet classification, OpenFlow has a
much higher demand for updates, making most of traditional

3

TABLE II. An example of 2-tuple classifier

Rule id Priority Field X Field Y Action
R1 6 111* * action1
R2 5 110* * action2
R3 4 * 010* action3
R4 3 * 011* action4
R5 2 01** 10** action5
R6 1 * * action6

algorithms inapplicable in the context of SDN. An example
OpenFlow classifier is shown in Table I.

Packet classification is a hard problem with high complexity.
From a geometric point of view, packet classification can be
treated as a point location problem, which has been proved that
the best bounds for locating a point are either Θ(log N) time
with Θ(NF) space, or Θ((logN)F−1) time with Θ(N) space
for N non-overlapping hyper-rectangles in F-dimensional
space [31]. Therefore, the worst-case mathematical complexity
of algorithmic packet classification is extremely high, which
makes it impractical to achieve a wire-speed requirement
within the capabilities of current memory technology. But
fortunately, packet classification rules in real-life applications
have some inherent characteristics that can be exploited to
reduce the complexity. These inherent characteristics provide
a good substrate for the exploration of practical algorithmic
solutions [1], [15]–[18], [20], [21], [23], [26], [32]–[40].
Among them, decision tree and Tuple Space Search (TSS)
are two major approaches. Next, we briefly summarize the
related work on these two techniques. For the convenience of
description, we use a small example of 2-tuple rule set shown
in Table II for subsequent discussions. Figure 2(a) shows the
geometric representation of the example rules given in Table II.

B. Decision Tree-based Packet Classification

In decision tree-based schemes, the geometric view of the
packet classification problem is taken and a decision tree
is built. The root node covers the whole searching space
containing all rules. They work by recursively partitioning
the searching space into smaller subspaces until less than a
predefined number of rules are contained by each subspace.
In case a rule spans multiple subspaces, the undesirable rule
replication happens (e.g., R3, R4 and R6 in Figure 2(b)).
When a packet arrives, the decision tree is traversed to find a
matching rule at a leaf node. According to the partitioning
method on searching space, current decision trees can be
categorized into two major approaches: equal-sized cutting and
equal-densed cutting (i.e., splitting).

1) Classical Decision Tree Schemes:
Cutting based schemes, such as HiCuts [15] and Hyper-

Cuts [16], separate the searching space into many equal-sized
subspaces using local optimizations. HiCuts cuts the searching
space into many equal-sized subspaces recursively until the
rules covered by each subspace is less than the pre-defined
bucket size called binth. To reduce memory consumption,
HiCuts uses some heuristics to select the cutting dimension
and decides how many subspaces should be cut using a space
optimization function. Figure 2(b) shows the decision tree
generated by HiCuts, where the Field X is cut into four
equal-sized subspaces (i.e., [0,3], [4,7], [8,11], [12,15]), and

R2 R1
R6

0000 1111

0000

1111

R5

R4

R3

Field X

F
ie

ld
 Y

(a) Geometric view

Leaf 2

R3,R4,R5,R6

Leaf 4

R2,R3,R4,R6

Cut-X:4

Leaf 3

R3,R4,R6

Leaf 1

R3,R4,R6

Leaf 5

R1,R3,R4,R6

Cut-X:2

(b) HiCuts

Cut-X:2

Cut-Y:2

Cut-X:4

Cut-Y:2

Leaf 1

R3,R4

Leaf 2

R5

Leaf 3

R1,R2

Pushup: R6

Leaf 4

R2

Leaf 5

R1

Leaf 6

R3,R4

Leaf 7

R3,R4

Leaf 8

R2(R3&4)

Leaf 9

R1(R3&4)

(c) HyperCuts

Split-X

13

Split-Y

5

X <= 13

Split-Y

5

X > 13

Y <= 5 Y > 5 Y <= 5 Y > 5

Leaf 1

R2,R3,

R6

Leaf 2

R2,R4,

R5,R6

Leaf 3

R1,R3,

R6

Leaf 4

R1,R4,

R6

(d) HyperSplit

Fig. 2. Review on related decision trees (binth = 4).

is further cut into two equal-sized subspaces (i.e., [12,13],
[14,15]) to finish the decision tree construction. HyperCuts
can be considered as an improved version of HiCuts, which
is more flexible in that it allows cutting on multiple fields per
step, resulting in a fatter and shorter decision tree. Besides,
several optimization techniques are adopted in HyperCuts,
such as node merging, rule overlap, region compaction and
pushing common rule subsets upwards. But both HiCuts and
HyperCuts have the same rule replication problem for rules
spanning multiple subspaces, especially for large rule tables.
Figure 2(c) shows the decision tree generated by HyperCuts.

In order to reduce the rule replications suffered from equal-
sized cuttings, schemes based on splitting divide the searching
space into unequal-sized subspaces containing a nearly equal
number of rules. HyperSplit [17], a well-known splitting-
based decision tree scheme, splits the searching space into
two unequal-sized subspaces containing a nearly equal number
of rules. Due to its simple binary separation in subspaces,
the worst-case search performance of HyperSplit is explicit.
However, even with the optimized binary space splitting, the
memory consumption of HyperSplit still grows exponentially
as the number of rules increases. Figure 2(d) shows the
decision tree generated by HyperSplit, we can see that in each
internal tree node, HyperSplit splits the selected field into two
unequal-sized subspaces, with each subspace covering rules as
balanced as possible.

2) Recent Decision Tree Schemes:
EffiCuts [18], a well-known cutting based scheme, observed

that real-life rules exhibit several inherent characteristics,
and a good rule set partitioning can reduce rule replications
dramatically. Thus, instead of building a single decision tree
for all rules, EffiCuts separates rules into several subsets with
each subset creating its own decision tree independently using
a variant of HyperCuts. With all F fields considered, up to
2F decision trees can be generated for F-tuple classifiers,
resulting in a lot of overall memory accesses. In contrast,
HybridCuts [20] separates rules based on a single field rather
than all F fields in EffiCuts, thus, HybridCuts achieves a
significant reduction in the number of subsets (i.e., from 2F

4

to F+1), which in turn reduces the overall memory accesses.
However, due to the employment of HyperCuts, the worst-case
search performance of HybridCuts is unbounded. Worse still,
with the increase of the number of rule fields and the size of
classifiers, the performance of HybridCuts drop dramatically
due to the deteriorating rule replications. Instead of using the
most significant bits for cuts, ByteCuts [23] introduces a new
cutting scheme that uses any range of bits to build decision
trees. However, ByteCuts can achieve high-speed construction
of trees but not fast updates of rules.

In order to reduce rule replications suffered from splitting,
ParaSplit [19] proposes a rule set partitioning algorithm to
reduce rule set complexity, which significantly reduces the
overall memory consumption in HyperSplit. However, ParaS-
plit employs a complex heuristic for rule set partitioning,
which may require tens of thousands of iterations to reach an
optimal partitioning. To achieve better scalability for different
rule sets, SmartSplit [21] separates rules into at most four
subsets to build balanced trees dynamically, achieving high-
speed classification by leveraging the logarithmic search time
of balanced search trees. By partitioning rules into several
sortable subsets and building a MITree for each subset, Parti-
tionSort [22] achieves logarithmic classification and update
time for each subset simultaneously. Due to the stringent
constraints on partitioning, PartitionSort requires much more
trees than SmartSplit, resulting in slower classification. Instead
of using a single cutting or splitting technique to build trees,
CutSplit [1], the preliminary version of the proposed CutTSS,
introduces a practical framework that can exploit the benefits
of cutting and splitting techniques adaptively. However, due to
the boring rule replications in its post-splitting stage, CutSplit
can only achieve incremental updates by rebuilding sub-trees,
consuming up to a few milliseconds in some cases, far more
behind the wire-speed requirement of incremental updates.

C. Tuple Space-based Packet Classification

In tuple space-based schemes, rules are partitioned into a
set of hash tables (i.e., tuple space) based on easily computed
rule characteristics. Thus, rules can be inserted and deleted
from hash tables in amortized one memory access, resulting
in faster updates. When a packet arrives, these partitioned hash
tables are individually searched to find the best matching.

1) Classical Tuple Space Schemes:
Tuple Space Search (TSS) [26], the basic tuple space-based

packet classification, decomposes a classification query into
a set of exact match queries in hash tables. TSS partitions
rules into different hash tables based on a set of pre-computed
tuples. Each tuple can be defined by concatenating the actual
bits used in each field in order, so that a hash key can be
created to map the rules of that tuple into its corresponding
hash table. During classification or updates, those same bits are
extracted from the packet or rule as a hash key for searches.
For example, rules R1 and R2 shown in Table II should be
placed in the same tuple space, because both of them use three
and zero of the bits in their respective two fields. Thus, TSS
builds four tuple spaces as shown in Table III for rules given in
Table II. As an improvement, the Pruned Tuple Space Search

TABLE III. TSS builds 4 tuples for rules given in Table II

Tuple Rule id Rule Priority Tuple Priority Field X Field Y Action

(3, 0) R1 6 6 111* * action1
R2 5 110* * action2

(0, 3) R3 4 4 * 010* action3
R4 3 * 011* action4

(2, 2) R5 2 2 01** 10** action5

(0, 0) R6 1 1 * * action6

(PTSS) algorithm [26] reduces the scope of the exhaustive
search by performing a search on individual rule fields to find a
subset of candidate tuple spaces. However, both TSS and PTSS
have low classification speed, because the number of tuple
space is large and each tuple space must be searched for every
packet. This problem becomes more serious for classifiers with
an increased number of fields such as OpenFlow classifiers.

2) Recent Tuple Space Schemes:
TupleMerge [27], a recently proposed tuple space scheme,

improves upon TSS by relaxing the restrictions on which
rules may be placed in the same tuple space. By merging
tuple spaces that contain rules with similar characteristics
together, TupleMerge can reduce the number of candidate
tuple spaces and thus the overall classification time. How-
ever, with more tuple spaces merged, its performance may
be affected due to hash collisions. Priority Sorting Tuple
Space Search (PSTSS) [28], which is used in Open vSwitch,
improves the performance of TSS by sorting tuple spaces
based on a pre-computed priority of each tuple space (i.e.,
Tuple Priority column in Table III). By searching tuple spaces
in the descending order of priority, the search can terminate
as soon as a match is found because it has the highest
priority among all possible matched rules. Although PSTSS
can improve average performance compared to TSS, its worst-
case performance is still the same as TSS.

D. Summary of Prior Art

Clearly, decision tree-based packet classification has been
actively investigated for two decades. But as far as we know,
none of them can make an excellent trade-off among all key
metrics. In particular, most of them can achieve high-speed
packet classification but not fast updates, which seriously limit
their scalability in the era of SDN. In contrast, tuple space-
based schemes have been the de-facto choice in software
switches, because they support fast updates with only linear
memory consumption. However, these schemes still suffer
from low classification performance especially for large clas-
sifiers, falling short of the needs of high-speed requirements
in fast-growing networks.

III. CUTTSS: ENJOYING BOTH WORLDS OF EFFICIENT
CLASSICATION AND RULE UPDATE

In this section, we first introduce ideas behind the design of
CutTSS. Then, we propose a scalable partitioning algorithm
based on experimental observations, which can eliminate rule
overlapping at large scales. To exploit these characteristics of
partitioned subsets, a set of novel cuttings are designed to build
partial trees without any rule replications in the first stage.
After that, a two-stage framework consisting of heterogeneous

5

algorithms is proposed to build decision trees for partitioned
subsets. Finally, we give more insights on the effectiveness of
CutTSS from both theoretical and experimental aspects.

A. Ideas & Framework

According to the above review and analyses given in
CutSplit [1], we know that cutting techniques can separate
searching space into smaller subspaces quickly for faster
classification, but it suffers from serious rule replications. In
contrast, TSS can completely avoid rule replications and sup-
port fast incremental updates, but it has longer classification
time due to tuple expansions, especially for rule sets at large
scales. Therefore, to foster the strengths and circumvent the
weaknesses of decision tree and TSS schemes, the idea directly
perceived is to combine the following two strategies:
• Pre-Cutting at large scales: Cutting-based partitioning

on the searching space at large scales, which can reach
any subspaces at small scales with very few steps.

• Post-TSS at small scales: TSS-based searching on sub-
spaces at small scales, which can avoid inefficient cutting
of decision trees.

Figure 1 shows the initial framework of the following
CutTSS. However, in order to design scalable algorithms to
meet the above design goals, an effective combination of these
two ideas still faces several difficulties and challenges:
• Low memory access: Although partitioning can reduce

rule overlapping significantly, it will increase the overall
memory accesses. Thus, how to generate rule subsets as
few as possible?

• Low memory consumption: Since cutting on rules
overlapped at different scales will lead to serious rule
replications, how to avoid rule replications during the first
cutting stage?

• Low update time: Since many rules are overlapped and
concentrated in some subspaces at small scales, which
will lead to inefficient cuttings due to rule replications.
How to avoid rule replications in these subspaces at small
scales?

The answers to these questions are the key ideas in this
paper. Our solution can be summarized in the following three
steps:
• Step 1: Partitioning based on very few small fields: In

order to eliminate rule overlapping at large scales and
reduce the number of partitioned subsets, we separate
rules into subsets based on their characteristics shared
in very few small fields.

• Step 2: Pre-cuttings by exploiting the global charac-
teristics of the partitioned subsets: After partitioning
the rule set, we get a set of favorable fields for each
partitioned subset, where a set of simpler cutting algo-
rithms without prior optimizations can be applied for
space partitioning.

• Step 3: TSS-assisted cutting trees for fast updates:
Thanks to the clever partitioning and pre-cuttings without
any rule replications, most of the rules can be separated
into leaf nodes for the linear search, except for a small
fraction of concentrated rules at small scales. For these

Root Node

Leaf Nodes
(#rule <= binth)

Pre-Cutting

on small fields

Rule List

Rule Set

Small
Subseti

Small
Subset1

Small
Subsetm

Partitioning

based on small fields

Big
Subset

Tuples

PSTSS

Post-TSS

for non-leaf nodes

Linear

Search

... ...

... ...

The i th TSS

assisted tree

The last TSS

assisted tree

The first TSS

assisted tree

Non-leaf Terminal Nodes
(#rule > binth)

Tuple List

PSTSS

Priority sorting

on subsets

...

Fig. 3. The refined framework of CutTSS.

non-leaf terminal nodes, we employ a TSS-based algo-
rithm to facilitate the rest of tree constructions.

Based on these ideas, we give the refined framework of
the proposed CutTSS shown in Figure 3. Overall, a complete
packet classification framework with two heterogeneous stages
exploiting favorable properties in their respective space scales
is in place. Next, we give more details about CutTSS from
the following three aspects: rule set partitioning, decision tree
construction and decision tree operation.

B. Rule Set Partitioning based on Small Fields

Classification rules in real-life applications have structural
redundancies and several inherent characteristics that can be
exploited to reduce the complexity. Thus, we use the publicly
available ClassBench and OpenFlow-like rule tables for study
to make observations on common characteristics of rule sets. It
should be noted that the two OpenFlow-like rule tables are sup-
ported by the authors of ParaSplit [19], which were generated
based on 216 real-life rules from enterprise customers. We first
give a few definitions, then we present the key observations
related to the following discussions on rule set partitioning.

1) Definitions:
Given an N-field rule R = (F1, ... Fi , ..., FN) and a threshold

value vector T = (T1, ... Ti , ..., TN), where i ∈ {1, 2, ..., N},
we first give some definitions for field Fi as follows:

• Fi is a big field: the range length of field Fi > Ti;
• Fi is a small field: the range length of field Fi ≤ Ti .

Based on the above definitions for field Fi , we further give
some definitions for R as follows:

• R is a big rule: ∀i ∈ {1, 2, ..., N}, Fi is a big field;
• R is a k-small rule: R contains at least k small fields.

For a classical 5-tuple rule, since the protocol field is
restricted to a small set of values (e.g., tcp, udp), we just
consider the other four fields in this paper. Then the threshold
value vector T for 5-tuple rules is simplified to a four-
dimensional vector T = (TS A, TDA, TSP , TDP). For the sake
of convenience in writing, we use a logarithmic vector T’
to represent the threshold value vector T equivalently. For
example, if we set threshold value vector T = (216, 216, 28,
28), then index logarithmic T’ = (16, 16, 8, 8).

6

Fig. 4. The ratio of big rules for seed-ipc rule set.

TABLE IV. Statistical results for 5-tuple & OpenFlow-like
rules

Rule Set(#rules) Threshold Vector #Big Rules #Small-k Rules
k=1 k=2 k=3 k=4 k>4

seed-acl(752)
T = (216, 216, 28, 28)

3 749 739 425 0 0
seed-fw(269) 4 265 218 17 2 0

seed-ipc(1550) 2 1548 1472 789 5 0
openflow-1(716) T = (2t1 , 2t2 ...2ti ...), 0 716 708 655 426 0
openflow-2(864) ti = half width of Fi 0 864 852 761 429 0

2) Observations:
Based on the above definitions, we make some statistical

experiments for several rule sets from ClassBench. There are
three types of rule sets: ACL (Access Control List), FW (Fire-
wall) and IPC (IP Chains). Figure 4 shows the ratio of big rules
under different thresholds for seed IPC rule set. Due to length
limitation, more results for ACL and FW rule sets are publicly
available on our website (http://www.wenjunli.com/CutTSS).
It is clear that the ratio of big rules is very low even under
very demanding thresholds. For example, assume T’ = (16,
16, 8, 8), the ratio of big rules for three types of rule set are
all less than 0.01, that is to say, less than 1% rules are big
rules under T = (216, 216, 28, 28). This indicates that the vast
majority of the rules have at least one small field satisfying
a threshold T. Essentially, this observation is consistent with
previous observations. Otherwise, a large number of big rules
may cause serious space overlapping which is contrary to
previous observations that the number of rules or address
prefixes matching a given packet is typically five or less.

Table IV shows statistical results for 5-tuple rule sets and
OpenFlow-like rule tables. Clearly, this observation is still
effective for OpenFlow-like rule tables: the vast majority of
rules have at least one small field.

3) Rule Set Partitioning:
Based on the above observations, we propose a partitioning

algorithm to separate rules into several subsets. The purpose of
our partitioning is to obtain a few subsets without duplicates
among each other. For each subset, all contained rules should
share a common characteristic for a set of rule fields: small
field. Next, we introduce a simple heuristic as follows:

–Step1: Removal of big rules. Since the number of big rules
is negligible, we can simply apply PSTSS for these rules.

–Step2: Selection of partitioning rules. We first count the
distinct values for each field, then select a few fields with a

large number of distinct values. The selection makes sure that
for the vast majority of rules, there is at least one selected field
with a small value. The rest rules without any small value in
the selected fields will be treated as big rules.

–Step3: Fields-wise partitioning. Assume that M fields have
been selected for F-tuple rule sets. We categorize rules based
on field length (i.e., big or small) in all selected fields, leading
to at most 2M -1 subsets. This partitioning is different from
EffiCuts from two perspectives: fewer fields and more flexible
definition of small/big field, which enables much more flexible
partitioning to generate fewer subsets.

–Step4: Selective subset merging. For subsets containing
very few rules, we can merge these rules into other subsets
that have fewer small fields. Due to the consideration of its
relevance and space limitation, we do not elaborate on this
algorithm in this paper. Note that our merging will not lead to
rule replication in our decision trees, which is quite different
from EffiCuts.

Take rules in Table I as an example, we first move
R5 into a big rule subset, then we calculate the number
of distinct small fields in each field and pick ip_src &
ip_dst as the two most distinct fields. Thus, we can par-
tition the rule set into four subsets: big_subset = {R5},
(smallip_src , smallip_dst)= {R1}, (bigip_src , smallip_dst)=
{R3} and (smallip_src , bigip_dst)={R2, R4}. Finally, we can
merge (smallip_src , smallip_dst) with (bigip_src , smallip_dst)
for a new subset (arbitraryip_src , smallip_dst)={R1, R3},
where arbitrary field contains both small and big field.
Thus, three subsets are generated for the sample rule set:
big_subset = {R5}, (smallip_src , bigip_dst)={R2, R4} and
(arbitraryip_src , smallip_dst)={R1, R3}.

C. Decision Tree Construction: Pre-Cutting & Post-TSS
From Figure 3, we can see that a TSS-assisted tree will be

built for each partitioned subset (except for the big subset).
Thus, we will give more details about the tree building
algorithm in CutTSS. For the convenience of description, we
will use the rule set shown in Table V as a working example,
where no big rules are included. Based on the above definitions
of rule field, we can label each rule with a field vector as shown
in Table V. Based on these field labels, the fourteen rules can
be partitioned into three subsets as shown in Figure 5. For each
subset, we then build the decision tree through the following
two steps: pre-cutting and post-TSS.

1) Pre-Cutting: Fixed Cuttings on Small Fields
The rationale behind the above strategy of rule set partition-

ing is simple: by grouping rules that are narrow in the same
fields, rules that are large in these fields are excluded, and
intensive rule replications caused by these excluded rules are
eliminated, thereby enabling very efficient cuttings. What is
more, this grouping can completely eliminate rule replications
at large scales (i.e., larger than small field’s threshold) for
prefix fields, because each prefix can never be overlapped
with two shorter prefixes with the same prefix length. To
exploit these favorable characteristics of partitioned subsets,
we introduce a simple but effective cutting algorithm called
Fixed Cuttings (FiCuts), which will be applied in the first stage
partial tree construction.

7

TABLE V. A new example of 2-tuple classifier (TX = 4, TY
= 4)

Rule id Priority Field X Field Y Action Field Label
R1 14 001* * action1 <small, big>
R2 13 0*** 110* action2 <big, small>
R3 12 1000 * action3 <small, big>
R4 11 1001 00** action4 <small, small>
R5 10 0*** 011* action5 <big, small>
R6 9 01** 100* action6 <small, small>
R7 8 011* 10** action7 <small, small>
R8 7 11** 1*** action8 <small, big>
R9 6 1101 * action9 <small, big>
R10 5 111* * action10 <small, big>
R11 4 * 010* action11 <big, small>
R12 3 010* 000* action12 <small, small>
R13 2 10** 0010 action13 <small, small>
R14 1 10** 0001 action14 <small, small>

0000 1111

0000

1111

R6

Field X

F
ie

ld
 Y

R1

R7

R

3
R2

R

8

R5

R11

R12

R

9

R

10

R13
R14

R

4

(a) Original rule set

0000 1111

0000

1111

Field X

F
ie

ld
 Y

R1 R

3

R

8

R

9

R

10

(b) Subset 1: (smallX , bigY)

0000 1111

0000

1111

Field X

F
ie

ld
 Y

R2

R5

R11

(c) Subset 2: (bigX , smallY)

0000 1111

0000

1111

R6

Field X

F
ie

ld
 Y

R7

R12

R13
R14

R

4

(d) Subset 3: (smallX , smallY)

Fig. 5. Ruleset partitioning example (TX = 4, TY = 4).

FiCuts derives from HiCuts and HyperCuts, but with a
better global view on the characteristics of the rule set. As
shown in Figure 5(b), the rules in the subset are all small in
Field X. This facilitates cuts along the Field X without any
rule replications at large scales. Since the rules have been
grouped into several subsets, with each subset sharing the
same small fields, FiCuts can utilize this information to exploit
efficient cuttings. Compared to HiCuts and HyperCuts, FiCuts
has several differences in cutting details as follows: (1) Instead
of changing cutting dimensions dynamically, FiCuts conducts
cuttings on the subset along a set of fixed dimensions, where
the rules are small in these fields; (2) Instead of deciding
how many subspaces should be cut per step dynamically, the
number of cuts per step in CutTSS is a fixed value (i.e.,
MAXCUTS, defined to control the number of empty tree node);
(3) None of the prior optimization methods is required in
FiCuts, making it simple enough to achieve fast lookups and
updates; (4) As FiCuts is only designed for the construction

of partial trees in the first stage, its cutting processes will stop
not only in the leaf nodes containing rules less than the pre-
defined binth, but also in the nodes located at small scales
(i.e., cutting space smaller than the threshold of small field).

Thus, for the subsets containing one or more small fields,
FiCuts will cut on that single or multiple small fields to build
partial trees as illustrated in Figure 6. We can see from the
partial trees that rule replication can be completely avoided
and all rules are located in the bottom nodes of the tree (i.e.,
leaf nodes or non-leaf terminal nodes). Besides, as none of the
prior optimization methods is adopted in equal-sized cutting
processes, each node in the partial trees can be easily indexed
by a string of bits, which can be used as an array key during
lookups and updates. For each subset, FiCuts continues its
cutting processes until the number of rules is less than the
threshold for linear search or the cutting space is smaller
than the threshold of small field. Take the subsets shown in
Figure 6 as an example, FiCuts just works fine for the second
subset: it builds the whole tree as illustrated in Figure 6(e),
in which all rules are partitioned into leaf nodes. However,
Figure 6(d) shows a different scenario, where pure FiCuts
does not solve the problem completely, and only a partial tree
can be constructed. When FiCuts reaches the rightmost cutting
subspace in Figure 6(a), it is no longer effective by continuing
cutting along Field X, because the cutting space in Field X is
now smaller than TX . Therefore, it is necessary to resort to
other more effective methods to continue tree constructions at
small scales.

2) Post-TSS: Tuple Space Assisted Cutting Trees
After the first stage of pre-cuttings, two types of terminal

nodes will be generated in the built partial trees: leaf node
(i.e., #rules ≤ binth) and non-leaf terminal node (i.e., #rules
> binth). As a very limited number of rules are contained in
leaf nodes, we can simply conduct a linear search on rules as
in traditional decision trees. Thus, the second stage is mainly
designed to handle packet classification on non-leaf terminal
node. It is not difficult to see that the searching space has
been separated into much smaller subspaces after pre-cuttings,
where each subspace contains much fewer rules compared with
the original rule set. On the other hand, a small space means
long address prefixes or less nesting levels of ranges, both
indicating a very limited tuple space. Based on this property,
we employ the PSTSS for rules in the non-leaf terminal nodes
to facilitate tree constructions. Thus, for the two partial trees
shown in Figure 6, we can build their complete trees without
any rule replications as illustrated in Figure 7.

Up to now, three complete decision trees have been built
for all rules given in Table V, as shown in Figure 6(e) and
Figure 7. Overall, by exploiting the benefits of decision tree
and TSS techniques adaptively, CutTSS can build TSS-assisted
decision trees without any rule replications, thereby enabling
fast updates and linear memory consumption.

3) Refined Optimizations
To further improve the performance, several optimizations

have been adopted in our implementation as follows:
–Optimization 1: Priority sorting on partitioned subsets. For

each incoming packet, CutTSS requires searching on every
partitioned subset, even if a rule has been matched in an

8

0000 1111

0000

1111

Field X

F
ie

ld
 Y

R1 R

3

R

8

R

9

R

10

Fixed Cuttings-X

(a) Subset 1: Fixed cuttings on field X

0000 1111

0000

1111

Field X

F
ie

ld
 Y

R2

R5

R11

F
ix

e
d

 C
u

ttin
g

s-Y

(b) Subset 2: Fixed cuttings on field Y

0000 1111

0000

1111

R6

Field X

F
ie

ld
 Y

R7

R12

R13
R14

R

4

Fixed Cuttings-X

F
ix

e
d

 C
u

ttin
g

s-Y

(c) Subset 3: Fixed cuttings on field X&Y

Leaf 1

R1

Leaf 2

R3
Non-leaf

terminal node
{R8, R9, R10}

Ø

FiCuts-X:4

(d) Partial tree for subset 1

Leaf 1

R5, R11
Ø

FiCuts-Y:4

Leaf 2

R2
Ø

(e) Whole tree for subset 2

Leaf 1

R12

Leaf 2

R6, R7

Non-leaf
terminal node
{R4, R13, R14}

Ø

FiCuts-XY

X:2, Y:2

Ø

FiCuts-XY

X:2, Y:2

Ø Ø

(f) Partial tree for subset 3

Fig. 6. The first stage partial trees built by FiCuts (MAXCUTS = 4, binth = 2).

Leaf 1

R1

Leaf 2

R3
Ø

FiCuts-X:4

TSS-assisted Node 1
1

st
Tuple <2, 1>: {R8}

2
nd

Tuple <4, 0>: {R9}
3

rd
Tuple <3, 0>: {R10}

(a) TSS-assisted tree for subset 1

Leaf 1

R12

Leaf 2

R6, R7

TSS-assisted Node 1
1

st
Tuple <4, 2>:

{R4}
2

nd
Tuple <2, 4>:
{R13, R14}

Ø

FiCuts-XY

X:2, Y:2

Ø

FiCuts-XY

X:2, Y:2

Ø Ø

(b) TSS-assisted tree for subset 3

Fig. 7. The complete TSS-assisted decision trees in CutTSS.

early subset. We improve on this by tracking the priority
of partitioned subsets as that in PSTSS and PartitionSort
algorithms, where the priority of each subset is the maximum
priority of all the rules in it. By searching from greatest to
least maximum priority on subsets, each lookup can terminate
as soon as a rule is matched in an early subset.

–Optimization 2: Dynamic thresholds on terminal leaf
nodes. For the terminal nodes after pre-cuttings, we adopt

a dynamic threshold to distinguish leaf nodes and non-leaf
nodes. The idea of this optimization is derived from the
performance comparison for a lookup between linear search
and TSS search. For example, the latest version of Open
vSwtich (http://www.openvswitch.org) implements the PSTSS
based on a variant of cuckoo hash [41], [42], where multiple
hash lookups are required for each TSS lookup in Open
vSwtich, which is much more complex and time-consuming
than a linear search. Assume that each TSS lookup takes N
times than a linear rule search, we can set the threshold as
N*M, where M is the number of tuples in the terminal node.

–Optimization 3: Greedy thresholds on small fields. Essen-
tially, small field is a relative concept of space scale. It is
not difficult to see that narrower small fields may enable more
effective pre-cuttings and less tuple spaces in non-leaf terminal
nodes. However, narrower small fields may also lead to more
rules in the big subset as illustrated in Figure 4, which may in
turn increase the number of tuples in the big subset. To make
a good trade-off, we select the thresholds on small fields by
running a greedy algorithm during partitioning. The strategy of
selecting thresholds in our implementation is simple: choose
one that achieves the least average memory access.

D. Decision Tree Operation: Classification & Update

In this subsection, we complete the picture of CutTSS from
the following aspects: packet classification and rule update.

1) Packet Classification:
For each incoming packet, CutTSS classifies the packet

based on the framework shown in Figure 8(a). For each
decision tree, CutTSS conducts classification in two steps: (1)
Search the partial tree to find a terminal node; (2) Lookup

9

Lookup in the Terminal Node

(i.e., Leaf or PSTSS Node)

Search the Partial Tree for

the Specific Terminal Node

The i-th TSS-assisted Tree

Lookup in the Terminal Node

(i.e., Leaf or PSTSS Node)

Search the Partial Tree for

the Specific Terminal Node

The Last TSS-assisted Tree

Lookup in the Terminal Node

(i.e., Leaf or PSTSS Node)

Search the Partial Tree for

the Specific Terminal Node

The First TSS-assisted Tree

Lookup in the PSTSS Tuple List for Big Subset

The PSTSS Classifier

P
a

c
k
e
t H

e
a

d
e

r

...

...
...

...

P
rio

rity
 S

e
le

c
to

r fo
r th

e

H
ig

h
e
s
t P

rio
rity

 R
u

le

(a) Packet classification

Update in the Terminal Node

(i.e., Leaf or PSTSS Node)

Search the Partial Tree for

the Specific Terminal Node

The i-th TSS-assisted Tree

Update in the Terminal Node

(i.e., Leaf or PSTSS Node)

Search the Partial Tree for

the Specific Terminal Node

The Last TSS-assisted Tree

Update in the Terminal Node

(i.e., Leaf or PSTSS Node)

Search the Partial Tree for

the Specific Terminal Node

The First TSS-assisted Tree

Update in the PSTSS Tuple List for Big Subset

The PSTSS Classifier

U
p
d

a
te

 R
u
le

...
...

Field

Label

(b) Rule update

Fig. 8. The framework of classification and update in CutTSS.

for the best matching rule from the matched terminal node.
Assuming that a 2-field incoming packet is Pi = <1000, 0010>,
we next give a working example for the rule set shown in
Table V, where three decision trees are built as shown in
Figure 6(e) and Figure 7: (1) For the decision tree shown in
Figure 6(e), Pi can traverse this tree based on its first two bits
in Field Y (i.e., 00). Thus, the first child node is found, and no
rule is matched in this subset; (2) For the decision tree shown
in Figure 7(a), Pi can traverse this tree based on its first two
bits in Field X (i.e., 10). Thus, the third child node is matched,
and R3 is the best matching rule based on linear search; (3)
For the decision tree shown in Figure 7(b), Pi can traverse this
tree based on its first bit in Field Y&X (i.e., 0&1). Thus, the
second child node is matched, and R13 is the best matching
rule based on PSTSS search. Finally, R3 with a higher priority
will be the best matching rule for Pi .

2) Rule Update:
For each updated rule, CutTSS updates the rule based on

the framework shown in Figure 8(b). Unlike the above packet
classification where all subsets have to be searched, CutTSS
can perform each rule update just in a single subset, because
the updated or inserted rule can only appear in a specific
subset in CutTSS, depending on its field label vector. CutTSS
performs rule updates in a tree in two steps: (1) Search the
partial tree to find a terminal node; (2) Update (e.g., insert or
delete) the rule pointed by the matched terminal node. When
searching the partial tree for rule updates, the specific bits
in each rule’s small fields are used as a key for searching.
Assuming that there are three update operations as follows: (1)

Delete rule R4 = <1001, 00**>; (2) Insert rule R15 = <1***,
010*>; (3) Insert rule R16 = <110*, *>, we next give a working
example for the rule set shown in Table V. By calculating the
field label of R4 (i.e., <small, small>), we known that R4 may
only appear in the decision tree shown in Figure 7(b), which
is built for the subset shown in Figure 5(d). Then, R4 can
traverse this tree based on its first bit in Field Y&X (i.e., 0&1).
Thus, the second child node is matched, and then R4 will be
updated in this terminal node. After removing R4 from the
PSTSS classifier, the number of rules in this node is reduced
to the threshold of binth. Thus, we can replace this non-leaf
terminal node with a new leaf node as shown in Figure 9(c).
Similarly, we can first calculate the field label of R15 (i.e.,
<big, small>) and R16 (i.e., <small, big>), and then conduct
updates as R4 in the corresponding trees shown in Figure 6(e)
and Figure 7(a), as illustrated in Figure 9.

E. Rationale Behind Effectiveness

To reveal the rationale behind the effectiveness of CutTSS,
we next give more insights from both theoretical and experi-
mental aspects as follows.

1) Theoretical Analysis:
Essentially, CutTSS is a two-stage tree framework built from

the following two stages: (1) Coarse-grained pre-cutting with
low memory consumption; (2) Fine-grained post-TSS with
high performance. For the first-stage pre-cuttings in CutTSS,
rule replications can be avoided completely, thereby enabling
linear memory consumption for the partial trees. For the
following tree constructions, CutTSS adopts PSTSS with a
linear memory consumption to handle packet classification in
non-leaf terminal nodes. Thus, for a F-dimensional subset con-
taining N distinct rules, the memory consumption of CutTSS
is Θ(N), which is the best theoretical bound proved in previous
work as described in Section II(A). For each incoming packet
or updated rule, CutTSS performs packet classification or rule
update in two steps: (1) Search the partial tree based on the
specific bits in each packet or rule in Θ(1) time; (2) Perform
classification or update in the matched terminal node containg-
ing M rules (M≤N). Based on the above Section II(A), we
can conclude that the worst-case time complexity of CutTSS
is Θ((logM)F−1). Thus, compared to the theoretical worst-
case time complexity (i.e., Θ((logN)F−1)), CutTSS achieves
Θ((logM N)F−1) times improvement. We then consider the
average worst-case time complexity of CutTSS as follows:
Assuming that all rules are evenly distributed, the width and
the threshold value of the small field are 2W and 2T , we
can conclude that the average worst-case time complexity of
CutTSS is Θ((logMA)

F−1), where MA = N*2(T−W). Thus,
from the perspective of theoretical analysis, the rational behind
the effectiveness of CutTSS is essentially to perform the
packet classification in a subspace at small scales that contains
fewer rules. Although the theoretical bounds tell us that it is
infeasible to design a single algorithm that can perform well in
all cases, real-life classifiers have some inherent characteristics
that can be exploited to reduce the complexity. Next, we give
more insights from the aspect of experimental analysis.

10

Leaf 1

R1

Leaf 2

R3
Ø

FiCuts-X:4

TSS-assisted Node 1
1

st
Tuple <2, 1>: {R8}

2
nd

Tuple <4, 0>: {R9}
3

rd
Tuple <3, 0>: {R10,

R16}

(a) Tree for subset 1: (smallX , bigY)

Ø

FiCuts-Y:4

Leaf 1

R2
ØTSS-assisted Node 1

1
st

Tuple <1, 3>:
{R5, R15}

2
nd

Tuple <0, 3>:
{R11}

(b) Tree for subset 2: (bigX , smallY)

Leaf 1

R12

Leaf 2

R6, R7
Ø

FiCuts-XY

X:2, Y:2

Ø

FiCuts-XY

X:2, Y:2

Ø Ø
Leaf 3

R13, R14

(c) Tree for subset 3: (smallX , smallY)

Fig. 9. The new decision trees after three rule updates.

()

(a) Seed-acl(752): #non-leaf terminal
nodes

()

(b) Seed-fw(269): #non-leaf terminal nodes

1
40

50

100

(16,16) 8

150

200

250

(24,24) 12
16(32,32)()

(c) Seed-ipc(1550): #non-leaf terminal
nodes

(16,16) (20,20) (24,24) (28,28) (32,32)
0

200

400

600

800

(T'SA, T'DA)

 Average number of rules at small scales

(d) Seed-acl(752): Average number of rules

(16,16) (20,20) (24,24) (28,28) (32,32)
0

100

200

300

(T'SA, T'DA)

 Average number of rules at small scales

(e) Seed-fw(269): Average number of rules

(16,16) (20,20) (24,24) (28,28) (32,32)
0

200

400

600

800

1000

1200

1400

1600

(T'SA, T'DA)

 Average number of rules at small scales

(f) Seed-ipc(1550): Average number of rules

Fig. 10. Rule distribution density at different sized small scales.

2) Experiential Analysis:
We conduct experiential analysis based on the above three

seed rule sets, to show more insights on the feature of rule
distribution from two aspects: (1) Number of non-leaf terminal
nodes at small scales; (2) Average number of rules at small
scales. Take the subset shown in Figure 5(d) as an example, we
can say that six rules are concentrated at three (over 4*4 = 16)
distinct subspaces at small scales and the average number of
rules is two. Among the three subspaces, only one of them
contains rules more than binth, which will be handled by
PSTSS in the tree. Based on this example, we now give more
details about experiential analysis. Figure 10(a), (b) and (c)
shows the number of subspaces containing rules more than
binth at different sized small scales. We can see that although
rules are distributed in many subspaces, the vast majority of
them contain a small number of rules. In other words, the
number of non-leaf terminal nodes in CutTSS is much smaller
than the number of leaf nodes in the trees, thereby making
CutTSS more like a traditional decision tree which can achieve
high performance on classification inherently. That’s why we
call this tree as a TSS-assisted tree in CutTSS. Figure 10
(d), (e) and (f) shows the average number of rules over all
subspaces that contain rules. We can see that even under very
loose thresholds, the number of rules after the first stage pre-
cutting is much smaller than the original rule set size, thereby
enabling high performance on both search and update.

IV. EXPERIMENTAL RESULTS

In this section, we present some experimental results of
CutTSS. We start with an overview of our experimental
methodology. After that, we evaluate our algorithm from the
following key aspects: tree construction, packet classification
and rule update respectively.

A. Experimental Methodology

We compare CutTSS with three algorithms: PSTSS, Cut-
Split and PartitionSort. Priority Sorting Tuple Space Search
(PSTSS) is the algorithm with the fastest update performance,
which is used in Open vSwitch for flow table lookups. CutSplit
is the state-of-the-art decision tree with the fastest classifica-
tion performance. ParitionSort is the state-of-the-art splitting
based tree with the best performance trade-off between classifi-
cation and update. To facilitate fair comparison, we have made
some modifications to the open-source code of the other three
algorithms, and their performances are essentially not affected
by our modification. We are very grateful to the authors of
these algorithms, their open-source codes and selfless personal
help enable us to make a fair and justifiable comparison. As
a response, our implementation of CutTSS is also publicly
available on our website (http://www.wenjunli.com/CutTSS).

1) Rule Sets: The rule sets used in our experiments are
generated using ClassBench, whose size varies from 1k to

11

0

100

200

300

400

Su
bs

et
s

 CutTSS PartitionSort
 PSTSS

100k10k1k
(a) ACL

0

40

80

120

160

Su

bs
et

s

 CutTSS PartitionSort
 PSTSS

100k10k1k
(b) FW

0

75

150

225

300

375

Su

bs
et

s

 CutTSS PartitionSort
 PSTSS

100k10k1k
(c) IPC

Fig. 11. Number of partitioned subsets.

0.1
1

10
100

1000
10000

100000

 CutTSS PartitionSort
 PSTSS CutSplit

Ti
m

e
(m

s)

100k10k1k
(a) ACL

0.1
1

10
100

1000
10000

100000
Ti

m
e

(m
s)

 CutTSS PartitionSort
 PSTSS CutSplit

100k10k1k

(b) FW

0.1
1

10
100

1000
10000

100000

 CutTSS PartitionSort
 PSTSS CutSplit

Ti
m

e
(m

s)

100k10k1k

(c) IPC

Fig. 12. Construction time.

100k. There are three types of rule sets: ACL, FW and IPC.
Each rule set is named by its type and size, e.g., FW_1k refers
to the firewall rule set with about 1000 rules. For each size, we
generate 12 rule sets respectively based on 12 seed parameter
files (i.e, 5 ACL, 5 FW and 2 IPC) in ClassBench [30].

2) Simulation Environment: We measure classification time
by classifying all packets in trace files generated by Class-
Bench when it constructs the corresponding rule set. In order
to evaluate the actual lookup performance of classification
algorithms, we conduct experiments by omitting caching in
the fast path and consider only slow path classification for
each incoming packet. To evaluate the performance of the
incremental update, we measure update time as the time
required to conduct one rule insertion or deletion. For each
rule set, we shuffle rules randomly to generate a sequence of
update operations, where half of the insertions are randomly
mixed with half of the deletions.

3) Machine Environment: All experiments are run on a
machine with AMD Radeon 5-2400G CPU@3.6GHz and 8G
DRAM. The operating system is Ubuntu 16.04. To reduce the
CPU jitter error, we take the average results by running ten
times for each evaluation circularly.

B. Evaluation on Construction

1) Number of Subsets: Since the number of partitioned
subsets in CutSplit is the same as in CutTSS, Figure 11 shows
the number of subsets in CutTSS, PSTSS and PartitionSort.
We find that CutTSS produces a relatively stable number of
subsets regardless of the type and size of rule sets, averaging at

3.7 subsets across all of the rule sets. This favorable property
makes CutTSS more suitable for concurrency. In contrast,
the number of partitioned subsets in PSTSS and PartitionSort
ranges from 2 to 368 with an average of 151.7 and 20.9 subsets
respectively.

2) Construction Time: Figure 12 shows the construction
time of CutTSS as well as PSTSS, PartitionSort and CutSplit.
Clearly, PSTSS is the fastest one among them. In contrast,
CutTSS takes a little more time than PSTSS because of its
partial tree constructions in the pre-cutting stage. However,
even for the rule sets up to 100k, CutTSS can still build
decision trees in about one second, much faster than previous
decision trees such as EffiCuts and SmartSplit that require
almost ten minutes. We can also find that the construction
time of CutTSS increases almost linearly with the rule set
size, which makes it well suitable for larger classifiers.

3) Memory Consumption: Figure 13 shows the memory
consumption of CutTSS as well as PSTSS, PartitionSort and
CutSplit. Our experimental results show that our CutTSS
requires less space than other algorithms, consuming an av-
erage of 25.8 Byte/Rule across all of the rule sets, while it
requires 45.4 Byte/Rule, 50.9 Byte/Rule and 243.2 Byte/Rule
in PSTSS, PartitionSort and CutSplit respectively. We can
also find that, the memory consumption of CutTSS increases
almost linearly with the rule set size, which makes it well
suitable for larger classifiers.

C. Evaluation on Classification

12

0

40

80

120

160

200
 CutSplit

>

 CutTSS PartitionSort
 PSTSS

Av
er

ag
e

(B
yt

e/
R

ul
e)

100k10k1k

(a) ACL

0

40

80

120

160

200>

Av
er

ag
e

(B
yt

e/
R

ul
e)

100k10k1k

 CutSplit
 CutTSS PartitionSort
 PSTSS

(b) FW

0

40

80

120

160

200>

Av
er

ag
e

(B
yt

e/
R

ul
e)

100k10k1k

 CutSplit
 CutTSS PartitionSort
 PSTSS

(c) IPC

10

100

1000

10000

100000

 CutTSS PartitionSort
 PSTSS CutSplit

To
ta

l (
KB

)

100k10k1k

(d) ACL

10

100

1000

10000

100000

 CutTSS PartitionSort
 PSTSS CutSplit

To
ta

l (
KB

)

100k10k1k

(e) FW

10

100

1000

10000

100000

To
ta

l (
KB

)

100k10k1k

 CutSplit
 CutTSS PartitionSort
 PSTSS

(f) IPC

Fig. 13. Memory consumption.

1) Average Classification Time: Figure 14 shows the av-
erage classification time and throughput of CutTSS as well
as PSTSS, PartitionSort and CutSplit. In order to compare
the performance of these algorithms, we first compute the
average times for three different types of rules respectively,
and then compute the ratio based on these average times.
From Figure 14(a), (b) and (c), we can see that CutTSS
requires less time to classify packets, with an average of
0.257 us, 0.318 us and 0.135 us for each type of rule set
respectively, while PSTSS consumes an average of 1.765 us,
1.164 us and 1.506 us respectively. Thus, CutTSS achieves an
average of 6.868 times, 3.661 times and 11.156 times speed-
up on classification performance than PSTSS respectively,
almost an order-of-magnitude improvement on classification
time on average. Additionally, the experimental results show
that CutTSS achieves 1.43 times and 1.89 times speed-up
than CutSplit and PartitionSort respectively. It should be noted
that, although there are much more subsets in PartitionSort,
it can still achieve comparable performance to CutTSS. The
reason is that, almost all the rules are concentrated in the first
few subsets when ordered by maximum priority, so that most
lookups in PartitionSort can terminate as soon as a rule is
matched in the first few subsets.

2) Average Throughput: From Figure 14(d), (e) and (f),
we can see that CutTSS achieves an average throughput of

0.0

1.1

2.2

3.3

4.4

5.5

 CutTSS PartitionSort
 PSTSS CutSplit

Ti
m

e
(u

s)

100k10k1k

(a) ACL

0.0

0.5

1.0

1.5

2.0

2.5

 CutTSS PartitionSort
 PSTSS CutSplit

Ti
m

e
(u

s)

100k10k1k

(b) FW

0

1

2

3

4

 CutTSS PartitionSort
 PSTSS CutSplit

Ti
m

e
(u

s)

100k10k1k

(c) IPC

0

4

8

12

16

20

 CutTSS PartitionSort
 PSTSS CutSplit

Th
ro

ug
hp

ut
 (M

pp
s)

100k10k1k

(d) ACL

0

6

12

18

24

30

 CutTSS PartitionSort
 PSTSS CutSplit

Th
ro

ug
hp

ut
 (M

pp
s)

100k10k1k

(e) FW

0

4

8

12

16

20

 CutTSS PartitionSort
 PSTSS CutSplit

Th
ro

ug
hp

ut
 (M

pp
s)

100k10k1k

(f) IPC

Fig. 14. Classification performance.

6.013 Mpps (Million packets per second), 6.782 Mpps and
9.235 Mpps for each type of rule set respectively, while
PSTSS achieves an average of 0.994 Mpps, 1.016 Mpps and
1.396 Mpps respectively. Thus, CutTSS achieves an average
of 6.049 times, 6.675 times and 6.615 times improvement on
throughput than PSTSS respectively. Compared to CutSplit
and PartitionSort, CutTSS also achieves 1.304 times and 1.878
times improvement respectively across all of the rule sets. We
can also see an interesting phenomenon in Figure 14 that the
proposed CutTSS has much higher performance for a few
rule sets, such as the second rule set and the seventh rule
set in Figure 14(e). Actually, this phenomenon is caused by
the characteristic of the seed parameter file in ClassBench. In
Figure 14(e), the second, the seventh and the twelfth rule sets
are generated based on the same seed parameter file, but with
different sizes. By checking the type of terminal nodes after
pre-cuttings, we find that the ratio of non-leaf terminal node
in these three rule sets is much less than that in other rule sets,
meaning that the rules generated based on this specific seed
file are more evenly distributed than others. Thus, most of the
rules in these rule sets can be separated into leaf nodes and
be searched with linear search as traditional decision trees.
However, this phenomenon does not exist for the twelfth rule
set in Figure 14(e), the reason is that, when the rule set
contains more and more rules, there will be more and more

13

0

40

80

120

160

 CutTSS PartitionSort
 PSTSS CutSplit

M

em
or

y
Ac

ce
ss

100k10k1k
(a) ACL

0

25

50

75

100

 CutTSS PartitionSort
 PSTSS CutSplit

M

em
or

y
Ac

ce
ss

100k10k1k
(b) FW

0

40

80

120

160

 CutTSS PartitionSort
 PSTSS CutSplit

M

em
or

y
Ac

ce
ss

100k10k1k
(c) IPC

Fig. 15. Average memory access.

tuples needed to be searched in big subset, which may become
the performance hurdle of CutTSS.

3) Average Memory Access: Figure 15 shows the average
memory access of CutTSS as well as PSTSS, PartitionSort and
CutSplit. Note that we think traversing a tree node, a rule or a
tuple as one memory access in our experiments. It is obvious
that CutTSS is significantly better than other three algorithms.
Compared to PSTSS, experimental results show that CutTSS
achieves an average of 3.8 times reduction on the number
of memory accesses. Compared to PartitionSort and CutSplit,
CutTSS also achieves 2.3 times and 1.2 times improvement
on average.

D. Evaluation on Incremental Update
Since CutSplit can not support fast incremental updates,

we just evaluate update performance among CutTSS, PSTSS
and PartitionSort. Figure 16 shows the average incremental
update time and throughput of CutTSS as well as PSTSS
and PartitionSort. From Figure 16(a), (b) and (c), we can see
that CutTSS requires less time to update rules, achieving an
average of 0.464 us, 0.246 us and 0.273 us for each type of
rule set respectively, while PSTSS consumes an average of
0.314 us, 0.261 us and 0.301 us respectively. Additionally,
our experimental results also show that, CutTSS achieves
an average of 2.516 times speed-up on update time than
PartitionSort across all of the rule sets. From Figure 16(d),
(e) and (f), we can see that both CutTSS and PSTSS can
achieve high throughput for updates, achieving at an average
of 3.734 Mpps and 3.583 Mpps respectively. Thus, CutTSS
has comparable update performance to PSTSS, which is used
in Open vSwitch.

V. CONCLUSION

Open vSwitch implements a variant of TSS instead of
decision tree-based algorithms despite their better performance
on lookups, because the latter have poor support for fast
incremental updating of rules, which is an important metric
for SDN switches. However, TSS-based schemes can achieve
fast updates but have a performance concern.

To achieve fast lookup and update at the same time, we
propose CutTSS, a two-stage framework consisting of hetero-
geneous algorithms to adaptively exploit different characteris-
tics of the rule sets at different scales. In the first stage, partial

0.00

0.25

0.50

0.75

1.00

1.25

Ti
m

e
(u

s)

 CutTSS PartitionSort
 PSTSS

100k10k1k

(a) ACL

0.00

0.25

0.50

0.75

1.00

1.25

Ti
m

e
(u

s)

 CutTSS PartitionSort
 PSTSS

100k10k1k

(b) FW

0.00

0.25

0.50

0.75

1.00

1.25

Ti
m

e
(u

s)

 CutTSS PartitionSort
 PSTSS

100k10k1k

(c) IPC

0.0

1.5

3.0

4.5

6.0

Th
ro

ug
hp

ut
 (M

pp
s)

 CutTSS PartitionSort
 PSTSS

100k10k1k

(d) ACL

0

2

4

6

8

Th
ro

ug
hp

ut
 (M

pp
s)

 CutTSS PartitionSort
 PSTSS

100k10k1k

(e) FW

0

2

4

6

8

Th
ro

ug
hp

ut
 (M

pp
s)

 CutTSS PartitionSort
 PSTSS

100k10k1k

(f) IPC

Fig. 16. Update performance.

trees are constructed from rule subsets grouped with respect to
their small fields. This grouping eliminates rule overlap at large
scales, thereby enabling very efficient pre-cuttings without any
rule replications. The second stage handles packet classifica-
tion at small scales, where PSTSS is applied for these subsets
to facilitate tree constructions. Overall, CutTSS exploits the
strengths of both decision tree and TSS to circumvent their
respective weaknesses. Experimental results show that CutTSS
has comparable update performance to TSS in Open vSwitch,
while achieving almost an order-of-magnitude improvement
on classification performance over TSS.

14

REFERENCES

[1] W. Li, X. Li, H. Li, and G. Xie, “CutSplit: A decision-tree combining
cutting and splitting for scalable packet classification,” in IEEE INFO-
COM, 2018.

[2] N. McKeown et al., “OpenFlow: Enabling innovation in campus net-
works,” in ACM SIGCOMM, 2008.

[3] D. E. Taylor, “Survey and taxonomy of packet classification techniques,”
ACM Computing Surveys, vol. 37, no. 3, pp. 238–275, 2005.

[4] H. J. Chao and B. Liu, High performance switches and routers. John
Wiley & Sons, 2007.

[5] C. R. Meiners, A. X. Liu, and E. Torng, Hardware Based Packet
Classification for High Speed Internet Routers. Springer, 2010.

[6] H. Che, Z. Wang, K. Zheng, and B. Liu, “DRES: Dynamic range
encoding scheme for TCAM coprocessors,” IEEE Transactions on
Computers, vol. 57, no. 7, pp. 902–915, 2008.

[7] A. X. Liu, C. R. Meiners, and E. Torng, “TCAM Razor: A systematic
approach towards minimizing packet classifiers in TCAMs,” IEEE/ACM
Transactions on Networking, vol. 18, no. 2, pp. 490–500, 2010.

[8] B. Vamanan and T. Vijaykumar, “TreeCAM: Decoupling updates and
lookups in packet classification,” in ACM CoNEXT, 2011.

[9] O. Rottenstreich, R. Cohen, D. Raz, and I. Keslassy, “Exact worst case
TCAM rule expansion,” IEEE Transactions on Computers, vol. 62, no. 6,
pp. 1127–1140, 2013.

[10] O. Rottenstreich et al., “Compressing forwarding tables,” in EEE IN-
FOCOM, 2013.

[11] K. Kogan, S. Nikolenko, O. Rottenstreich, W. Culhane, and P. Eugster,
“SAX-PAC (scalable and expressive packet classification),” in ACM
SIGCOMM, 2014.

[12] O. Rottenstreich and J. Tapolcai, “Lossy compression of packet classi-
fiers,” in ACM/IEEE ANCS, 2015.

[13] O. Rottenstreich, I. Keslassy, A. Hassidim, H. Kaplan, and E. Porat,
“Optimal in/out TCAM encodings of ranges,” IEEE/ACM Transactions
on Networking, vol. 24, no. 1, pp. 555–568, 2016.

[14] O. Rottenstreich and J. Tapolcai, “Optimal rule caching and lossy
compression for longest prefix matching,” IEEE/ACM Transactions on
Networking, vol. 25, no. 2, pp. 864–878, 2017.

[15] P. Gupta and N. McKeown, “Packet classification using hierarchical
intelligent cuttings,” in IEEE Hot Interconnects, 1999.

[16] S. Singh, F. Baboescu, G. Varghese, and J. Wang, “Packet classification
using multidimensional cutting,” in ACM SIGCOMM, 2003.

[17] Y. Qi, L. Xu, B. Yang, Y. Xue, and J. Li, “Packet classification
algorithms: From theory to practice,” in IEEE INFOCOM, 2009.

[18] B. Vamanan, G. Voskuilen, and T. Vijaykumar, “EffiCuts: Optimizing
packet classification for memory and throughput,” in ACM SIGCOMM,
2010.

[19] J. Fong, X. Wang, Y. Qi, J. Li, and W. Jiang, “ParaSplit: A scalable
architecture on FPGA for terabit packet classification,” in IEEE Hot
Interconnects, 2012.

[20] W. Li and X. Li, “HybridCuts: A scheme combining decomposition and
cutting for packet classification,” in IEEE Hot Interconnects, 2013.

[21] P. He, G. Xie, K. Salamatian, and L. Mathy, “Meta-algorithms for
software-based packet classification,” in IEEE ICNP, 2014.

[22] S. Yingchareonthawornchai, J. Daly, A. X. Liu, and E. Torng, “A
sorted partitioning approach to high-speed and fast-update OpenFlow
classification,” in IEEE ICNP, 2016.

[23] J. Daly and E. Torng, “ByteCuts: Fast packet classification by interior
bit extraction,” in IEEE INFOCOM, 2018.

[24] W. Li, T. Yang, Y.-K. Chang, T. Li, and H. Li, “TabTree: A TSS-assisted
bit-selecting tree scheme for packet classification with balanced rule
mapping,” in ACM/IEEE ANCS, 2019.

[25] E. Liang, H. Zhu, X. Jin, and I. Stoica, “Neural packet classification,”
in ACM SIGCOMM, 2019.

[26] V. Srinivasan, S. Suri, and G. Varghese, “Packet classification using tuple
space search,” in ACM SIGCOMM, 1999.

[27] J. Daly and E. Torng, “TupleMerge: Building online packet classifiers
by omitting bits,” in IEEE ICCCN, 2017.

[28] B. Pfaff et al., “The design and implementation of open vswitch,” in
USENIX NSDI, 2015.

[29] M. Kuźniar, P. Perešíni, and D. Kostić, “What you need to know about
SDN flow tables,” in International Conference on Passive and Active
Network Measurement, 2015.

[30] D. E. Taylor and J. S. Turner, “Classbench: A packet classification
benchmark,” IEEE/ACM Transactions on Networking, vol. 15, no. 3,
pp. 499–511, 2007.

[31] M. H. Overmars and F. A. van der Stappen, “Range searching and point
location among fat objects,” Journal of Algorithms, vol. 21, no. 3, pp.
629–656, 1996.

[32] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel, “Fast and
scalable layer four switching,” in ACM SIGCOMM, 1998.

[33] T. Lakshman and D. Stiliadis, “High-speed policy-based packet for-
warding using efficient multi-dimensional range matching,” in ACM
SIGCOMM, 1998.

[34] P. Gupta and N. McKeown, “Packet classification on multiple fields,” in
ACM SIGCOMM, 1999.

[35] A. Feldman and S. Muthukrishnan, “Tradeoffs for packet classification,”
in IEEE INFOCOM, 2000.

[36] F. Baboescu and G. Varghese, “Scalable packet classification,” in ACM
SIGCOMM, 2001.

[37] D. E. Taylor and J. S. Turner, “Scalable packet classification using
distributed crossproducing of field labels,” in IEEE INFOCOM, 2005.

[38] Y. Qi et al., “Towards high-performance flow-level packet processing
on multi-core network processors,” in ACM/IEEE ANCS, 2007.

[39] C.-L. Hsieh and N. Weng, “Many-field packet classification for software-
defined networking switches,” in ACM/IEEE ANCS, 2016.

[40] T. Yang et al., “Fast OpenFlow table lookup with fast update,” in IEEE
INFOCOM, 2018.

[41] R. Pagh and F. F. Rodler, “Cuckoo hashing,” Journal of Algorithms,
vol. 51, no. 2, pp. 122–144, 2004.

[42] D. Zhou, B. Fan, H. Lim, M. Kaminsky, and D. G. Andersen, “Scalable,
high performance ethernet forwarding with cuckooswitch,” in ACM
CoNEXT, 2013.

Wenjun Li received his B.Sc. from University of
Electronic Science and Technology of China, in
2011, and M.Sc. from Peking University, in 2014.
From 2014 to 2015, he worked as a researcher in
network research department, Huawei Technologies
Co. Ltd. Now, he is a Ph.D. candidate in School
of Electronics Engineering and Computer Science,
Peking University. His research interests focus on
networking algorithms, such as packet classifica-
tions, IP lookups and sketches. He is a member of
ACM, IEEE and CCF.

Tong Yang received his PHD degree in Computer
Science from Tsinghua University in 2013. He vis-
ited Institute of Computing Technology, Chinese
Academy of Sciences (CAS) China from 2013.7 to
2014.7. Now he is an associate professor in the
Department of Computer Science and technology,
Peking University. His research interests focus on
networking algorithms, such as sketches, IP lookups
and Bloom filters. He published papers in SIG-
COMM, SIGKDD, SIGMOD, JSAC, ToN, etc.

Ori Rottenstreich is an assistant professor at the de-
partment of Computer Science and the department of
Electrical Engineering of the Technion, Haifa, Israel.
His main research interest is computer networks. In
2015-2017 he was a Postdoctoral Research Fellow
at the department of Computer Science, Princeton
University. Earlier, he received the BSc in Computer
Engineering (summa cum laude) and PhD degree
from the Technion in 2008 and 2014, respectively.

15

Xianfeng Li received his B.S. degree from School of
Computer and Control Engineering, Beijing Institute
of Technology, in 1995, and Ph.D. degree in com-
puter science from National University of Singapore,
in 2005. He is currently an Associate Professor
at Macau University of Science and Technology
(MUST). Prior to that, he worked as an Associate
Professor at Peking University Shenzhen Graduate
School. His research interests include Software-
Defined Networks, Codesign of hardware and soft-
ware, and Internet of Things.

Gaogang Xie received the BSc degree in physics,
the M.S. and PhD degree in computer science all
from Hunan University. He is a professor with
the Computer Network Information Center (CNIC)
Chinese Academy of Sciences (CAS), and the Uni-
versity of Chinese Academy of Sciences. In 2002-
2019 he was with the Institute of Computing Tech-
nology CAS. His research interests include Internet
architecture, packet processing and forwarding, and
Internet measurement.

Hui Li received his B.Eng. and M.S. degrees from
School of Information Eng., Tsinghua University,
Beijing, China, in 1986 and 1989 respectively, and
Ph.D. degree from the Dept. of Information En-
gineering, The Chinese University of Hong Kong
in 2000. He is now a Full Professor of Peking
University Shenzhen Graduate School. He was Di-
rector of Shenzhen Key Lab of Information theory
& Future Internet architecture, Director of PKU Lab
of CENI (China Environment for Network Innova-
tions), National Major Research Infrastructure. He

proposed the first co-governing future networking “MIN” based on blockchain
technology and implemented its prototype on Operator’s Network in the world,
and this project “MIN: Co-Governing Multi-Identifier Network Architecture
and Its Prototype on Operator’s Network” was obtained the award of World
Leading Internet Scientific and Technological Achievements by the 6th World
Internet Conference on 2019, Wuzhen, China. His research interests include
network architecture, cyberspace security, distributed storage, and blockchain.

Balajee Vamanan is an Assistant Professor in the
Department of Computer Science at University of
Illinois at Chicago (UIC). His research interests span
various aspects of computer networks and computer
systems. He received his Ph.D. from Purdue Univer-
sity in 2015. Prior to his graduate study, he worked
in NVIDIA as a design engineer.

Dagang Li is an assistant professor at the school
of Electronic and Computer Engineering of Peking
University Shenzhen Graduate School, Shenzhen,
China. His main research interest is computer net-
works. He received the Bachelor degree in Telecom-
munications Engineering from Huazhong University
of Science and Technology in Wuhan, China, and
PhD degree from Katholieke Universiteit Leuven in
Leuven, Belgium.

Huiping Lin is an undergraduate student from
school of Electronics Engineering and Computer
Science of Peking University, Beijing, China. She is
now majoring in Computer Science and Technology,
and advised by professor Tong Yang. Her research
interests include computer network, network mea-
surement, hash algorithms and sketches. She has
received Merit Student Award and a scholarship
from Peking University.

