
Efficient Mapping of Range Classifier into Ternary-CAM

Huan Liu
Department of Electrical Engineering

Stanford University, CA 94305
huanliu@stanford.edu

Abstract

Packet classification is inherently a multi dimensional
search problem which is either very computation intensive
or memory intensive for software implementation. Thus,
hardware based solution is necessary to keep up with gi-
gabit line rate processing. In this paper, we consider using
standard Ternary Content Addressable Memory (TCAM) as
a hardware classification engine. Traditionally, this ap-
proach has been deemed inefficient because ranges have to
be broken into prefixes before stored in TCAM, resulting in
large expansion. We propose a novel scheme where we can
efficiently map ranges into TCAM. Our proposal has no ex-
pansion at all, or very little expansion for width constrained
application. Our proposal enables high speed deterministic
classification using low cost commodity hardware.

1. Introduction

Internet routers need to classify packet based on multi-
ple header fields in order to support functions such as QoS
guarantee, traffic engineering and differentiated services.

Packet classification is defined as the action to match the
packet with a set of predefined rules, which is called clas-
sifier collectively. It involves matching a number of fields
in the packet (which we call keys) against the correspond-
ing fields in the rules. We say a packet matches a rule only
when all fields match.

The following types of matching are typically required
for a layer 2 to layer 4 classifier:

1. Exact match under arbitrary mask: The key is AND
with the mask associated with each rule, and then com-
pared with the value for exact match. For example,
Ethernet MAC address field and possibly even IP ad-
dress field [2] fall into this category. In general, the
mask bits will be arbitrary, i.e., 1’s and 0’s are not nec-
essarily contiguous. This kind of matching is particu-
larly hard for software to implement efficiently since

a software algorithm has to search each rule linearly.
There is no tree structure to exploit to save search time.

2. Longest prefix matching: This is a special case of ex-
act match under mask. Instead of arbitrary mask, this
case guarantees that the mask is a contiguous bits of
1’s followed by a contiguous bits of 0’s. IP address
field falls into this category as a result of adoption of
CIDR [7].

3. Range matching: A lower limit and an upper limit are
specified. If the key falls within the range, it is consid-
ered a match. TCP port field and TOS byte field fall
into this category. Longest prefix matching is a special
case of range matching where the boundary is power of
2. For example, prefix 01xx can be expressed as range
0100-0111.

4. Exact Match: This is a special case of all of the above.
The key has to match exactly with the field in the rule.

There are efficient algorithms that solve special cases of
the general classification problem. For example, routing
lookup only use one field, the destination address, to clas-
sify a packet. Many efficient algorithms [6, 10, 1, 9] have
been proposed. However, the general classification prob-
lem is much harder to solve. Several classification algo-
rithms aiming at software implementation have been pro-
posed [4, 8]. Either their run time or their memory require-
ment grows quickly with the number of rules supported. It
is hard to implement them purely in software and still meet
the lookup speed requirement in gigabit routers.

Co-processor has been proposed as an alternative solu-
tion. Typically, these processors are based on a general-
purpose processor with a number of features implemented
in hardware to speedup the lookup operation [3]. The main
packet processor sends all rules to the co-processor at sys-
tem initialization. When new packet arrives, it is passed to
co-processor for classification. Effectively, the main pro-
cessor is offloading the classification function to the co-
processor so that it could have further cycle to process new
packet. Co-processors typically have low density in terms

Proceedings of the 10TH Symposium on High Performance Interconnects Hot Interconnects (HotI’02)
0-7695-1650-5/02 $17.00 © 2002 IEEE

liwenjun
Highlight

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

of number of rules supported, and they are generally very
expensive because of limited production.

Another approach for classification is to use standard
Ternary Content Addressable Memory (TCAM) hardware
search engine. It has several advantages over software based
or co-processor based solutions:

1. TCAM’s generality enables it to be used in a variety
of networking applications. Several vendors such as
[5] are offering similar products as a result of huge
market demand. Thus TCAM will benefit most from
mass adoption. The popularity will encourage further
research and development investment to make it faster,
cheaper, denser and less power consuming. Coupled
with the economy of scale, TCAM will improve faster
than any other classification alternatives.

2. Secondly, TCAM architecture is simple and easy to
understand. Its standard architecture allows several
companies to produce compatible products. Instead
of using proprietary classification engine where the ar-
chitecture is different from one vendor to another, the
system designer could standardize on TCAM. Tremen-
dous saving both in system development cost and time
to market is possible.

3. TCAM is typically much denser than proprietary ar-
chitecture because of their regular structure. This
translates to smaller package, less number of I/O pins
and smaller real estate requirement.

4. TCAM is ideally suited to all matching mentioned ear-
lier except range matching. Especially for matching
under mask, TCAM has a clear advantage over all
other solutions.

5. TCAM’s performance is deterministic. Namely, it
takes the same number of cycles to complete every sin-
gle classification. These are no worse case scenarios
that would take longer time.

Despite these advantages, TCAM also has some limita-
tions. One of them is that TCAM could not perform range
matching efficiently. A range has to be expanded into pre-
fixes to fit the bit boundary. For example, a range of 1024-
65535 needs to be expanded into 6 separate TCAM entries.
In general, the number of expansion could be up to 2k,
where k is the width of the field [8]. If more than one range
field is specified in a rule, the number of expansion is mul-
tiplied. For example, if two range fields are used, each is 16
bits wide, there could be up to 32� 32 = 1024 expansions
for a single rule. Clearly, it is not scalable.

In this paper, we present a novel scheme to solve the
range matching limitation. Our basic algorithm expands
TCAM horizontally (using more bits per entry), and for

width limited application, we will also present an algorithm
that allows both horizontal and vertical expansion. Since
a bit in an entry represents a column in TCAM table, and
an entry represents a row, we will use bit and column in-
terchangeably and use entry and row interchangeably in the
following discussion.

2. Mappping Range to TCAM

Real life classifiers typically exhibit certain unique char-
acteristics. Several relevant observations from [2] are listed
here:

1. The transport layer protocol field is restricted to a small
set of exact values instead of a generic range.

2. Only 10.2% specifications for transport layer fields are
of generic range. Certain ranges are used in a large
number of rules. For example, 1023-65535 occurs in
9% of the rules. Assuming the rest 1.2% specifications
are all distinct, and assume a classifier has 2000 rules
(only 0.7% classifier is larger than 1000), there will
only be 2000�1.2%+1 = 25 distinct ranges.

3. It is common for many different rules in the same clas-
sifier to share a number of field specifications.

In general, even though the number of rules in a classifier
could be large, the number of distinct ranges specified for
any range field is very limited. Exact match specification
also happens frequently for a range field. We suspect the
reason is because network operators typically specify rules
manually. A human being can only manage a small set to
guarantee correct behavior.

These simple observations motivated our proposal.
Since the number of distinct ranges is limited, we could use
a single bit in an entry to represent each of them. This set of
bits is stored in TCAM instead of the original range. For ev-
ery packet, we have to translate the lookup keys into their bit
representation before matching against TCAM. The transla-
tion could be completed in a single memory access by direct
table lookup.

Our proposed scheme has no row expansion at all. Al-
though the number of bits used could be more than the
original field width. This happens when more than k dis-
tinct ranges are specified for a k bit wide field. For width
constrained application, we will present an algorithm that
allows both row and column expansion. The row expan-
sion will be much smaller than that caused by prefix expan-
sion for real life classifier. Although a lookup memory is
needed, it is much cheaper and less power consuming than
TCAM. We believe we are making the right trade off to al-
low TCAM to handle large size classifiers.

There are several advantages of our proposed scheme:

Proceedings of the 10TH Symposium on High Performance Interconnects Hot Interconnects (HotI’02)
0-7695-1650-5/02 $17.00 © 2002 IEEE

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Highlight

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Highlight

liwenjun
Highlight

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

1. It requires less TCAM storage space. Because of the
limited expansion (or no expansion), our scheme can
accommodate a much larger number of rules in a sin-
gle TCAM table, therefore, reducing system cost and
power consumption.

2. It has deterministic execution time. Most of the ex-
isting classification algorithms exploits special struc-
ture of classification rules. Depending on the particular
rule set and the lookup key, the execution time could
differ widely. For example, a tree based lookup algo-
rithm’s execution time would vary depending on where
the lookup key will match in a tree. This is true even
for a number of hardware classifier implementations.
The worst case execution time could be much larger
than the average execution time, making the system
performance unpredictable.

Throughout this paper, we will use the simple classifier
shown in Table 1 as an example. In the example classifier,
5 rules are specified by the combination of destination IP
address and destination port number.

Dest IP Addr (IP/mask) Dest Port Range Action
1 10.0.0.0/255.0.0.0 > 1023 Deny
2 192.168.0.0/255.255.0.0 50 - 2000 Allow
3 192.169.0.0/255.255.0.0 80 (http) High Priority
4 172.16.0.0/255.255.0.0 23 (telnet) Route through port A
5 172.16.0.0/255.255.0.0 21 (ftp) Rate Limit to 1Mbit/s

Table 1. A simple example classifier

2.1. Range Representation in TCAM

In this section, we first describe how ranges are repre-
sented in TCAM. For each range field, we use an n bits
vector B = fb1; b2; : : : ; bng to represent it, where n is the
number of distinct ranges specified for this field. The B

vector for a range Ri has 1 at bit position i, i.e., bi = 1, and
all other bits are set to don’t care. Since B is the actual bit
vector stored in TCAM, the bits are tri-valued, as a result,
don’t care is a valid value each bit can take on. An example
bit vector representation for the simple classifier in Table 1
is shown in Table 2.

2.2. Lookup key translation

Having just described how ranges are stored in TCAM,
we now describe how the lookup key should be translated
before matching against TCAM.

A lookup key v 2 [0; 2k] is translated into an n bit vector
V = fv1; v2; : : : ; vng. Bit vi is set to 1 if the key v falls into
the corresponding range Ri, namely, vi = 1 if and only if
v 2 Ri, otherwise it will be set to 0. For example, in our

Rule # TCAM rules
1 10.x.x.x xxxx1
2 192.168.x.x xxx1x
3 192.169.x.x xx1xx
4 172.16.x.x x1xxx
5 172.16.x.x 1xxxx

Table 2. Rules as stored in TCAM. x denotes
don’t care. The destination address field uses
hex number, whereas the port field uses bi-
nary number. The right most bit is bit 0, the
left most bit is bit 4.

example classifier, a lookup key of 1024 will be translated
into 00011 because it falls within both R1 and R2. A com-
plete lookup key translation table for the example classifier
for each possible lookup key value is shown in Figure 1.

2001

2000

1024

1023 00010

81 00010

50 00010

49 00000

24 00000

00001

00011

00011

80 00110
79 00010

23 01000

22 00000

21
20

10000
00000

...
...

...
...

...

>
10

23

50
-2

00
0

80.

23.
21.

Figure 1. Lookup key translation table for the
example classifier

Lookup key translation could be implemented as a direct
memory lookup. For a 16 bits wide range field, it requires
64K entries, which could be economically implemented us-
ing conventional memory. For typical layer 2 to layer 4 net-
work applications, the range fields such as TCP port, TOS
field all have width less than 16 bits. Even for MPLS labels,
which are 20 bits, direct memory lookup could be used. If
memory size is limited, it could also be implemented using
binary search algorithm. The trade off is in lookup time ver-
sus memory usage. We omit further discussion on lookup
key translation since the algorithms are well known.

Note that the idea of translating ranges into bit repre-

Proceedings of the 10TH Symposium on High Performance Interconnects Hot Interconnects (HotI’02)
0-7695-1650-5/02 $17.00 © 2002 IEEE

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

sentation has been used in software classification algorithm
[4], but it has not been used to map ranges into TCAM effi-
ciently.

2.3. Exact Match Optimization

Exact match is a special case of range matching. As
noted earlier, a large number of the ranges specified in real
life classifiers are actually exact matches. In our simple ex-
ample classifier, rule number 3, 4, 5 are all exact matches.

So far, we have used a single bit to represent each dis-
tinct range. In the case of exact match, it is possible to
reduce the number of bits used to log2(m + 1) where m

is the number of exact matches. The bit representation
will contain two parts: Be for exact matches, and B for
all others. Be = fb1; b2; : : : ; btg is a t bit vector, where
t � log2(m + 1). For a normal range, its Be = 0 and
its B portion is as determined in Section 2.1. For an exact
match, its B = 0 and its Be = i if it is the ith exact match.
We are effectively assigning code word, and each non-zero
value of vector Be is used to represent a single exact match.
Note that Be = 0 could not be used to represent any exact
match because it has the special meaning of “none of the
exact matches”.

In our example, if we use bit 2 and 3 as Be, the example
classifier as stored in TCAM is shown in Table 3. Instead
of using 3 bits to represent the 3 distinct exact matches,
we used only 2 bits. In general, the saving will be much
more significant when the number of distinct exact matches
is large, since the number of bits used grows linearly in the
standard approach, whereas, it grows logarithmically with
exact match optimization.

Rule # TCAM rule storage
1 10.x.x.x xxxx1
2 192.168.x.x xxx1x
3 192.169.x.x x01xx
4 172.16.x.x x10xx
5 172.16.x.x x11xx

Table 3. Rules as stored in TCAM with exact
match optimization

The lookup key translation table needs to be changed ac-
cordingly. The lookup key also contains two part: Ve cor-
responding to all exact mathes, and V corresponding to the
rest as described in Section 2.2. Ve = fv1; v2; : : : ; vtg is a
t bit vector. Ve = i if the lookup key v is equal to the ith
exact match, otherwise Ve = 0. The resulting bit represen-
tation for lookup key value v is a concatenation of V and
Ve.

The reason we can use this optimization is because
all exact matches are mutually exclusive. Namely, if the

lookup key matches one exact match, it will not match an-
other. As long as the ranges involved are mutually exclu-
sive, this optimization could be extended to normal ranges
as well.

2.4. A Lookup Example

To illustrate how a packet is classified based on our pro-
posed scheme, we walk through a simple example. Assum-
ing the rules are specified as in Table 1, and it is stored in
TCAM as shown in Table 3. A new packet arrives with des-
tination IP address 192.169.10.1 and port number 80. First,
the port number is indexed into the lookup key translation
table. The resulting V = 10 because 80 falls in range 50-
2000 but not range >1023. The resulting Ve = 01 because
01 is the value assigned to exact match value of 80. V and
Ve are concatenated then padded with 0 to form the range
lookup key 00110. Together with destination IP address, the
lookup will result in a match against rule 3.

3. Controlled Row and Column Expansion

The range mapping algorithm we described in last sec-
tion will expand the number of column used in TCAM lin-
early as the number of distinct ranges increases. Since
TCAM table typically has a limited number of columns,
but has a much larger number of rows, it is desirable that
our range mapping algorithm could expand in both row and
column direction as the number of distinct ranges grows.

The idea of expanding in both directions is simple. We
split the range field into r separate regions; each region is
assigned a region code using log2(r) bits. As a result of
the splitting, ranges will be broken into several subranges at
region boundaries. Within each region, the range mapping
algorithm is used on subranges, namely, each distinct sub-
range within a region is represented by a single bit. When a
range is broken into s sub-ranges, rules with this range need
to be represented by s separate entries, each corresponding
to one sub-range, resulting in row expansion.

An example is shown in Figure 2. The range field is split
into two regions. In region 0, 2 bits are needed to represent
the two distinct subranges. Similarly, in region 1, 2 bits are
needed to represent all subranges. Note that in both cases,
there are 3 separate subranges, but only 2 of them are dis-
tinct, therefore only 2 bits are needed. As a result of region
splitting, rule 5 is broken up into two separate rules. So, two
entries in TCAM are needed to represent rule 5.

Assuming there are n ranges specified for a given range
field, there will be at most 2n�1 regions if we split at every
possible end point of the ranges. Therefore, we need at least
log2(2n� 1) bits for the range field. This also corresponds
to the largest row expansion. At the other end of the solution
space, we need at most n bits for the range field, with no

Proceedings of the 10TH Symposium on High Performance Interconnects Hot Interconnects (HotI’02)
0-7695-1650-5/02 $17.00 © 2002 IEEE

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Highlight

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

1 2 3 4 5 6

Region 0 Region 1

Rule #1

Rule #2

Rule #4

Rule #5

End points

Rule #3

Figure 2. Example showing region splitting

row expansion at all. So, our algorithm is able to provide
different solutions based on the number of horizontal bits
available in TCAM.

3.1. Heuristic Algorithm for Region Splitting

How to split the range field into regions affects the num-
ber of ranges that need to be broken, which in turn affects
the degree of row expansion. The goal is to minimize row
expansion with a given number of horizontal bits to be used
in TCAM.

It is important to note that we only need to consider range
end points when deriving optimal way of splitting. For ex-
ample, in Figure 2, we only need to consider 4 points (ex-
cluding the boundary point 1 and 6). Any other points in
between will produce less optimal solution.

We used a heuristic algorithm, called Interative Neigh-
bour Merger (INM), that iteratively minimize the number
of row expansion while keeping the number of horizontal
bits used under a limit. The algorithm keeps a set of points,
rset, which constitutes the end points of regions. The re-
gions are formed by neighboring end points in the set. We
start the iteration with rset containing all end points of all
ranges. Effectively, we break at every end point to create at
most 2n � 1 regions. This corresponds to a solution with
minimal column expansion and maximum row expansion.
The algorithm then tries to pick end point that produces
the most number of range cuts, and remove it from rset

to cause the two neighboring regions to combine. The two
neighboring regions can be combined if the total number of
distinct subranges in the combined region is less than the
maximum number of horizontal bits available. The algo-
rithm ends when no point in rset could be removed further.
It is worth noting that the INM algorithm only considers
neighbouring regions. It may be possible to get better result
if more combinations can be considered.

In Figure 2 example, assuming we have only a 4 bit wide
field. The algorithm starts with 5 regions, which needs 3
bits to encode. In the first two iterations, both end point
3 and 5 will be picked since they both break two ranges
each. If we combine the neighboring regions, we will have 3
regions, and at most 2 subranges in each region. Therefore,
dlog2(3)e + 2 = 4 bits are used, so they can be combined.
In the next iteration, either end point 4 or 2 will be picked.

Since combining regions around end point 4 will result in
more bits than available, only end point 2 can be removed.
The algorithm stops in the next iteration since no further
end point could be removed.

The pseudo code for the INM algorithm is shown in Fig-
ure 3. The symbols used in the algorithm have the following
meaning:

� rset: The set of points that determines the regions.

� R: The number of regions. It should be jrsetj � 1.

� width: The width of the field in number of bits

� maxL: The maximum number of distinct subranges
that any region can have

� break(p): The number of ranges that are broken by end
point p

� L(rset): The maximum number of distinct subranges
within each region created by end points in rset

rset = end points of all ranges
forever

maxL = width - dlog2Re;
find p such that break(p) = maxfbreak(p0), 8p0 2 rset and

L(rset - fp0g) �maxLg
if (p = nil) /* no more point can be removed */

stop
else

rset = rset - fpg;

Figure 3. Interative Neighbour Merge (INM) al-
gorithm for region splitting

3.2. Expansion Factor Comparison

Because of the width constraint, our INM algorithm will
expand rules into more entries just like normal prefix ex-
pansion would. We know that prefix expansion is not scal-
able. Because of potential explosion, only a small number
of rules can be stored in TCAM. In this section, we will
compare how much expansion is required for each algo-
rithm.

Since no real life classifier is available in public domain,
we choose to compare our INM algorithm with regular Pre-
fix Expansion (PE) using randomly generated rules. We first
assume that there is only one range field in each rule, and
the range field width is 16 bits. Then, we randomly gener-
ated 100, 50 and 25 rules each with distinct ranges. Recall
that there are only 25 distinct ranges specified in transport
layer fields for a real life classifier with 2000 rules as ob-
served in [2], we believe the number of distinct ranges in
any range field in any real life classifier will be less than

Proceedings of the 10TH Symposium on High Performance Interconnects Hot Interconnects (HotI’02)
0-7695-1650-5/02 $17.00 © 2002 IEEE

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

0

200

400

600

800

1000

1200

1400

1600

12 16 20 24 28 32

bit vector width

n
u

m
 o

f
en

tr
ie

s

INM 100 rules

INM 50 rules

INM 25 rulesPE 50 rules

PE 25 rules

PE 100 rules

Figure 4. TCAM expansion comparison be-
tween Prefix Expansion (PE) and INM algo-
rithm for classifier with single range field.
100, 50 and 25 randomly generated rules are
used.

100, therefore, our evaluation gives a good indication of real
life performance. The result is shown in Figure 4.

As expected, as the width for the range field is increased,
the total amount of row expansion decreases for our INM al-
gorithm. Since our algorithm produces a range of solutions
varying in their degree of row and column expansion, the
system designer can choose the most suitable one. In terms
of degree of row expansion, our INM algorithm clearly out-
performs regular range expansion for the real life classifier
scenarios we are considering.

The advantage of our algorithm is much more pro-
nounced when we consider rules with two different range
fields, for example, rules that specify both the TCP source
port and destination port. The number of row expansion for
a rule is the same as the product of each individual range
field’s expansion. To compare the two algorithms, we con-
structed 100, 50 and 25 rules each with two randomly gen-
erated distinct ranges. The result is shown in Figure 5. As
expected, our algorithm produces much less expansion.

0

5000

10000

15000

20000

25000

12 16 20 24 28 32

bit vector width

n
u

m
 o

f
en

tr
ie

s

INM 100 rules

INM 50 rules

INM 25 rules

PE 100 rules

PE 50 rules

PE 25 rules

Figure 5. TCAM expansion comparison be-
tween Prefix Expansion (PE) and INM algo-
rithm for classifier with two range fields. 100,
50 and 25 rules each with two randomly gen-
erated ranges are used.

4. Conclusion

In this paper, we presented a novel scheme to efficiently
map ranges inside a rule into TCAM. Traditional approach
requires ranges to be expanded into prefixes before stored in
TCAM. Since the range could be arbitrary, each expansion
could result in 2k entries for each single rule, where k is
the width of the range field. Our proposed scheme can have
no expansion at all when the number of distinct ranges is
small, so a large number of rules could be stored in the same
TCAM.

Since we use a bit in each entry to represent a distinct
range, TCAM width grows linearly as new distinct ranges
are added. For width constrained application, we presented
an algorithm that allows both horizontal and vertical expan-
sion. It is expected that the number of distinct ranges in a
real life classifier is very limited, so our proposed scheme
will work very well. Our scheme enables deterministic clas-
sification at memory access speed. With our proposal, we
believe TCAM could be used to handle classification func-
tion better than other alternatives at the most demanding
line rate.

References

[1] A. Brodnik, S. Carlsson, M. Degermark, and S. Pink. Small
forwarding tables for fast routing lookups. In Proc. ACM
SIGCOMM, pages 3–14, Cannes, France, 1997.

[2] P. Gupta and N. McKeown. Packet classification on multiple
fields. Proc. Sigcomm, Comp. Commun. Rev., 29(4):147–60,
Sept. 1999.

[3] S. Iyer, R. Kompella, and A. Shelat. Classipi: An archi-
tecture for fast and flexible packet classification. IEEE Net-
work, pages 33–41, Mar./Apr. 2001.

[4] T. Lakshman and D. Stiliadis. High-speed policy-based
packet forwarding using efficient multi-dimensional range
matching. In Proc. ACM Sigcomm, pages 191–202, Sept.
1998.

[5] Netlogic microsystems. Ternary Synchronous
Content Addressable Memory (IPCAM).
http://www.netlogicmicro.com/pdf/NL82721.pdf.

[6] S. Nilsson and G. Karlsson. Ip-address lookup using lc-
tries. IEEE Journal on Selected Areas in Communications,
17(6):1083–92, 1999.

[7] Y. Rekhter and T. Li. An architecture for ip address alloca-
tion with cidr. RFC 1518, 1993.

[8] V. Srinivasan, S. Suri, and G. Varghese. Packet classification
using tuple space search. In Proc. ACM Sigcomm, pages
135–146, Sept. 1999.

[9] V. Srinivasan and G. Varghese. Fast address lookups using
controlled prefix expansion. ACM Transactions on Com-
puter Systems, 17(1):1–40, Oct. 1999.

[10] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner. Scal-
able high-speed ip routing lookups. In Proc. ACM SIG-
COMM, pages 25–36, Cannes, France, 1997.

Proceedings of the 10TH Symposium on High Performance Interconnects Hot Interconnects (HotI’02)
0-7695-1650-5/02 $17.00 © 2002 IEEE

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

