
Algorithms for Advanced Packet Classification with
Ternary CAMs

Karthik Lakshminarayanan Anand Rangarajan Srinivasan Venkatachary
Univ. of California, Berkeley Cypress Semiconductor Cypress Semiconductor

ABSTRACT
Ternary content-addressable memories (TCAMs) have gained wide
acceptance in the industry for storing and searching Access Control
Lists (ACLs). In this paper, we propose algorithms for addressing
two important problems that are encountered while using TCAMs:
reducing range expansion and multi-match classification.

Our first algorithm addresses the problem of expansion of rules
with range fields—to represent range rules in TCAMs, a single
range rule is mapped to multiple TCAM entries, which reduces the
utilization of TCAMs. We propose a new scheme called Database
Independent Range PreEncoding (DIRPE) that, in comparison to
earlier approaches, reduces the worst-case number of TCAM en-
tries a single rule maps on to. DIRPE works without prior knowl-
edge of the database, scales when a large number of ranges is
present, and has good incremental update properties.

Our second algorithm addresses the problem of finding mul-
tiple matches in a TCAM. When searched, TCAMs return the
first matching entry; however, new applications require either the
first few or all matching entries. We describe a novel algorithm,
called Multi-match Using Discriminators (MUD), that finds multi-
ple matches without storing any per-search state information in the
TCAM, thus making it suitable for multi-threaded environments.
MUD does not increase the number of TCAM entries needed, and
hence scales to large databases.

Our algorithms do not require any modifications to existing
TCAMs and are hence relatively easy to deploy. We evaluate the
algorithms using real-life and random databases.

Categories Subject Descriptors
C.2.6 [Internetworking]: Routers.

General Terms
Algorithms, Performance, Design.

Keywords
Packet classification, Ternary CAMs, Multi-match, Range.

1. INTRODUCTION
High-speed packet classification algorithms that scale to large

multi-field databases have become a widespread requirement for a
variety of applications such as network security appliances, qual-
ity of service filtering and load balancers. For classifying pack-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’05, August 22–26, 2005, Philadelphia, Pennsylvania, USA.
Copyright 2005 ACM 1-59593-009-4/05/0008 ...$5.00.

ets, a router employs a classification database (also called a policy
database) which has several access control lists (ACLs). Each ACL
consists of rules that are applied on incoming or outgoing packets.
While the syntax of these rules varies based on the router vendor,
the semantics of the rules allows similar classification information
to be specified—the rules allow the definition of various patterns
based on the packet header. Furthermore, for each rule, the set of
actions to be taken on packets that match the rule is also specified.

Designing algorithms that scale to millions of rules and millions
of searches per second has been and continues to be an impor-
tant stream of research. Several advances in algorithmic approaches
that use off-chip random access memories have been made in the
past few years. Recursive Flow Classification [8], Crossproduct-
ing [18, 20], HyperCuts [15], Extended Grid-of-Tries [1] are some
examples; refer to [19, 23] for details of these techniques.

However, in the past few years, the industry has increasingly em-
ployed Ternary Content Addressable Memories (TCAMs) for per-
forming packet classification [5, 9, 12]. A large class of current-
and next-generation systems that require up to a few hundred thou-
sand rules have adopted TCAMs for packet classification at multi-
gigabit speeds.1 The number of TCAM devices that have been de-
ployed worldwide in 2004 is over 6 million [3].

A TCAM is a memory device that stores data as a massive ar-
ray of fixed-width ternary entries. A ternary entry is a string of
bits where each bit is either 0, 1 or x (don’t care). Given a search
key, the TCAM searches the key in parallel against all the ternary
entries stored in the TCAM and produces the first match as the
result. TCAMs provide two main characteristics that make them
suitable for router design: deterministic search throughput and de-
terministic capacity. Current TCAMs can support up to 133 mil-
lion searches per second for 144-bit wide keys, and can store 128K
ternary entries that are 144 bits wide in a single device.

1.1 Problems
While TCAMs are well-suited for performing high-speed

searches on databases with ternary entries, the following problems
and trends reduce the efficiency of TCAMs.

Range rules: To store a rule with range fields, multiple TCAM
entries are needed, which reduces the efficiency of TCAMs [11,16].
In IP router ACLs, the port fields usually have ranges. As ranges
cannot be directly stored in TCAMs, traditionally, ranges are con-
verted to a corresponding set of prefixes, and each prefix is stored
in a separate TCAM entry (see Section 3.1.1). When this range-
to-prefix expansion technique is applied on the port fields, which
are 16 bits wide, a rule with a single range field can expand to
30 TCAM entries in the worst case. By analyzing router ACL
databases dated 1998 and 2004, we provide evidence for the fol-
lowing temporal trends that make the range expansion problem an
important one. Table 1 (see Section 3) provides the actual numbers.
1Due to power and cost considerations, current-generation TCAMs face
scalability challenges. A cost-effective approach to supporting millions of
rules at high speeds is still a topic of research.

193

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

• Number of rules in router ACL databases is increasing.
• Percentage of rules with one range field is increasing.
• Percentage of rules with two range fields is increasing.
• Number of unique ranges is increasing.

Multi-match classification: Security applications and account-
ing applications require the first k matching entries, or in some
cases all the matching entries, for a given key [25]. TCAMs do
not natively support finding multiple matches; they report only the
first matching entry.

1.2 Our Contributions
In this paper, we propose algorithms for addressing the range

expansion and multi-match classification problems using off-the-
shelf TCAMs. Our first algorithm, Database Independent Range
PreEncoding (DIRPE), reduces the worst-case number of TCAM
entries a single rule maps on to, when compared to earlier schemes.
DIRPE works without knowledge of the database, scales when a
large number of ranges is present, and has good incremental update
properties. Our second algorithm, Multi-match Using Discrimina-
tors (MUD), enables multiple matches to be found using a TCAM
without storing any per-search state information in the TCAM, thus
making it suitable for multi-threaded packet processing environ-
ments. MUD can scale to large databases since it does not expand
the number of TCAM entries needed. The benefits of MUD come
at the cost of extra search cycles; however, we show that MUD can
still support multi-match classification at multi-gigabit link speeds.

Both our algorithms utilize unused bits in the TCAM array to en-
code relevant information. Though the algorithms solve seemingly
different problems, we draw similarities between the algorithms,
and apply similar ideas for both the algorithms.

Our schemes do not require any change to existing TCAMs and
hence are relatively easy to deploy. This metric is important as
TCAMs are complex devices and architectural changes that mod-
ify TCAMs involve millions of dollars of investment and more than
two years of development time. Hence, algorithmic approaches that
utilize current TCAMs to solve a problem are preferable.

The rest of the paper is organized as follows. In Section 2, we
provide some background and describe the metrics and terminol-
ogy used in the paper. In Section 3, we present our database-
independent range encoding algorithm. In Section 4, we describe
our multi-match classification algorithm. Related work, evaluation
of the schemes, and comparison with earlier approaches are pre-
sented in the corresponding sections themselves.

2. PACKET PROCESSING ENVIRON-
MENT

Figure 1 shows a packet processor connected to a set of TCAMs.
Packets are classified using a classification database consisting of
several access control lists (ACLs), each of which holds several
rules. The control plane software maintains the ACLs and stores
them in the TCAMs. When data packets arrive, the packet proces-
sor parses the packet headers, and forms keys to search the appro-
priate ACLs (based on factors such as the interface the packet ar-
rives on). A typical search key is of the form:

<acl-id><proto><src-ip><dest-ip><src-port><dest-port>
A parallel search is performed on the entries stored in the

TCAM. The search returns the index of the first entry that matches
the search key. A memory location corresponding to the result in-
dex is used to store the action to be taken when a search key
matches the entry. Typical actions include permit/deny, update
counters and replicate on a port.

MEMORY

CPU Interface bus
(e.g., PCI)

Packet
out

MEM

TCAM

Packet
in

LINECARD CPU(LCPU)

TCAM

Result

Address/
Assoc.
Data

Instruction

Packet Processor
(ASIC or FPGA

or programmable
Network Processor)

Table Management
Software

DATA
PLANE

CONTROL
PLANE

Packet
Buffers

Figure 1: System picture of a router line card showing control and
data planes.

TCAMs constitute a significant portion of the cost of a multi-
gigabit linecard. For example, the price for a 10 gigabit linecard in
the next couple of years is expected to be less than a thousand dol-
lars [6]. However, TCAMs that can support 128K entries of 144-bit
width are expected to cost over $200 for the next few years [5,9,12].
Hence, to design efficient, low-cost multi-gigabit linecards, it is
critical to utilize TCAMs as efficiently as possible. Though today’s
TCAMs do not scale to millions of rules due to cost and power con-
siderations, they are well-suited for storing databases with up to a
few hundred thousand rules.

State-of-the-art TCAMs provide 18M ternary bits which are or-
ganized into 32, 64 or 128 blocks. Each block can be independently
configured to have a width of 72, 144, 288 or 576 bits. After the
fields of an ACL rule are encoded in the TCAM, typically there are
some extra bits that are left unused. For example, most IPv4 ACLs
consist of an identifier and a protocol (8 bits), destination address
(32 bits), source address (32 bits), destination port (16 bits) and
source port (16 bits)—a total of 104 bits. Usually, 4 more bits are
used to encode miscellaneous fields. Since TCAMs are typically
configured to be 144 bits wide, 36 extra bits remain unused.

We now describe some metrics for comparing algorithms used in
the packet classification subsystem for multi-gigabit routers.

2.1 Metrics
Speed/Throughput: The system has to support a guaranteed

throughput (in gigabits per second (Gbps)). To compute the guar-
anteed rate in millions of packets per second (MPPS), we assume a
minimum packet size of 64 bytes [1].

The system requires a certain minimum throughput (measured in
Millions of Packets Per Second (MPPS)), which is usually the wire-
rate assuming smallest-sized packets. Assuming 64-byte packets,
OC-48 corresponds to roughly 5 MPPS and OC-192 to 20 MPPS.

Capacity: Capacity is the number of rules that can be supported
in the search subsystem. In our experiments, we compared the ca-
pacity of candidate algorithms using worst-case, real-life, and ran-
dom databases.

194

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

Update Speed: Traditionally, rules are updated manually, and low
update speeds of the order of a few hundred per second are ac-
ceptable. However, newer systems that perform real-time active re-
sponse to hostile network events [4] require incremental updates at
much higher speeds.

Overhead on Packet Processor: This is the cost of the extra logic,
if any, that is needed as part of the packet processor.

Multi-threading Support: Most packet processors use many
threads of execution to achieve high speed. Components such as
TCAMs attached to the network processor are shared by all these
threads. Hence, algorithms that utilize such components must take
multi-threading into account.

In this paper, we compare various schemes using the metrics de-
scribed above. For real-life comparisons, we provide results us-
ing some Internet Service Provider (ISP) databases that we ob-
tained. Due to privacy reasons, we cannot reference the ISP. We
also use the Snort database, a publicly available intrusion detection
database [2].

2.2 Terminology
We now introduce some terminology that we use in the paper.

Let N denote the number of rules in a database Fdat. Let a range
field be W bits wide. Let R denote the closed range [s, e], where s
and e are W -bit numbers.

A key S is a collection of K fields from the packet header
H . These header fields are denoted H[1], H[2], . . . , H[K], where
each field is a string of bits.

A prefix P is a bit string of length between 0 and W . length(P)
denotes the number of bits in a prefix. (P padded with 0’s is the
smallest number encompassed by P and P padded with 1’s is the
largest number encompassed by P).

A filter rule or ACL rule F is a collection of K fields. Each
field F [i] in a rule can specify any of three kinds of matches: exact
match, prefix match, or range match. A rule that has at least one
of its fields having a range match specification is referred to as a
range rule.

An exact match specification is a value specified for a rule field
i. A header field H[i] is an exact match for the rule field F [i] if and
only if H[i] = F [i].

A prefix match specification is a prefix specified for a rule field
i. A header field H[i] is a prefix match for the rule field F [i] if and
only if the leading length(F [i]) bits of H[i] are the same as F [i].

A range match specification is a range of values F [i] =
valstart, . . . , valend for rule field i. A header field H[i] is a range
match for the rule field F [i] if and only if valstart ≤ H[i] ≤
valend.

A rule F is said to be a matching rule for a header H if and only
if each field H[i] of H matches the corresponding field F [i] of F .

3. REDUCING EXPANSION OF RANGE
RULES

Ternary CAMs are directly suited for storing ACL tables that
have rules with wildcards. However, a range cannot be stored di-
rectly in a TCAM since a TCAM supports storing only 0, 1 and x
(don’t-care) states. Hence, storing range rules could take a large
number of TCAM entries. In this section, we present DIRPE,
a database-independent algorithm that reduces the expansion of
range rules even in the worst-case. We first review earlier ap-
proaches and motivate our algorithm.

Statistic 1998 database 2004 database
Total number of rules 41190 215183

With single 4236 54352
range field (10.3%) (25.3%)

With single range field 553 25311
excluding “≥ 1024” specification (1.3%) (11.8%)

With two 0 3225
range fields (0%) (1.5%)

Unique ranges in first field 62 270
Unique ranges in second field 0 37

Table 1: Number of rules with range fields in a collection of ACLs
obtained in 1998 and 2004.

3.1 Earlier Approaches

3.1.1 Prefix Expansion of Ranges
A well-known method for representing range rules in TCAMs

is to expand each range into a set of prefixes, which can then be
used directly as the TCAM entries [19]. For rules with multiple
range fields, the sets of prefixes corresponding to all the fields are
crossproducted to get the TCAM entries. The worst-case expansion
for a W -bit range is 2W−2. A simple proof by construction is as
follows. Consider the range [1, 2W−2]. The smallest set of prefixes
needed to cover this range is {01*, 001*, 0001*, . . ., 0W−11, 10∗,
110∗, . . ., 1W−10}. For a 16-bit range field, the worst-case expan-
sion is 30. Hence, an IP ACL rule which has two 16-bit port fields
can expand to 30 × 30 = 900 entries in the worst case.

3.1.2 Database-dependent Encoding of Ranges
To reduce the expansion of rules, additional bits in the TCAM

can be used to encode the ranges that appear frequently. To illus-
trate this scheme, consider the example of an ACL database that
contains the range R in several range rules. Consider the following
encoding of an extra bit in TCAM: set the bit to 1 when the range
specification in the rule encompasses the range R, and 0 otherwise.
Furthermore, the extra bit in the search key is set to 1 if the key
falls in the range R, and 0 otherwise. This encoding reduces the
expansion of all rules that contain the range R to 1.

The simple scheme described above requires an extra bit for each
distinct range that appears in the database to achieve a worst-case
expansion of 1. To scale to databases with several unique ranges,
region-based range encoding schemes have been proposed [11,22].
These schemes divide the ranges into many regions and use a hier-
archical encoding; they first encode the regions and then the ranges
within the regions. Since the encoding depends on the database,
incremental updates of the rules are expensive.

Furthermore, to append the search key with the appropriate bits,
the packet processor needs logic with a certain number of com-
parators. While the overhead on the processor is small for databases
with a few unique ranges, as the number of unique ranges increases,
the logic gets prohibitively large. Since Table 1 shows a trend of in-
creasing number of unique ranges, we expect this problem to only
worsen. An alternative to using the logic with comparators is to
have a precomputed table that maps each possible key value into
the appropriate extra bits. While precomputation is feasible today
for 16-bit range fields (corresponds to a table with 64K entries), for
larger widths, the table would get prohibitively large. For example,
even a 24-bit field would require a table size of 16M entries.

3.1.3 Modifying TCAMs to Accommodate Ranges
TCAM modifications to accommodate range matching better—

such as implementing comparators at each entry level—have been
proposed [16]. Experimenting with such approaches is important.
However, since TCAMs are massively parallel, circuit-intensive de-

195

liwenjun
Pencil

liwenjun
Highlight

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

Range Prefixes DIRPE with 1 extra bit
≥ 0 xx xx x

≥ 1 01, 1x xx 1
≥ 2 1x 1x x

≥ 3 11 11 x

Table 2: Expansion of “≥” ranges on a 2-bit field using prefix expan-
sion and DIRPE. Notice that the representation is in ternary and not
prefix format. The search key b1b0 would be replaced by b1b0c where
c = b0 OR b1)

vices, even small changes at a per-entry circuit level can, besides re-
quiring several million dollars of investment, suffer from long lead
times (of at least a few years) before they can be produced at ac-
ceptable speed, cost and power. Hence, while modifying TCAMs
is not impossible, changing the ternary nature of the entries has
many barriers; software-based algorithms that use existing TCAMs
to better represent range rules are often preferred.

3.2 Database Independent Range PreEncod-
ing (DIRPE)

3.2.1 Basic Ideas behind DIRPE
DIRPE is based on two simple ideas. First, instead of represent-

ing a range as a set of prefixes, we can represent it as a set of arbi-
trary ternary values. (For example, 0xx1x0 is a ternary value that
is not a prefix.) Second, additional unused bits in a TCAM array
can be used to encode the ternary strings. Hence, the ternary val-
ues would be wider than the prefixes, but the total number of them
would be less than the number of prefixes, even in the worst case.
Since TCAMs have pre-defined widths, extra bits are available in
each row “for free” after storing the bits corresponding to the rule.

We illustrate these ideas using a simple encoding for ranges of
the form “≥” on a 2-bit field. Using prefix expansion, the worst-
case expansion of any range is 2. By using three (instead of two)
bits in the TCAM to represent a range, the worst-case can be re-
duced to one TCAM entry (see Table 2). The search key for the
range field b1b0 is augmented with the third bit using the equation
b1 OR b0. Logically, the third bit encodes whether the search key
is a member of either 01 or 1x.

3.2.2 DIRPE: Encoding Closed Ranges
We now describe a generic instantiation of DIRPE for encoding

closed ranges on a W -bit range field. For now, let us assume that
there is no restriction on the number of extra bits in the TCAM that
we can use. Consider the following encoding, which we term as
fence encoding, that maps a W -bit field to 2W−1 bits: the encoding
of a number i consists of i ones preceded by 2W−1−i zeros.

As shown in Table 3, any closed range can be represented using
fence encoding using a single ternary entry. In other words, 2W−1
bits are sufficient for an encoding to reduce the worst-case expan-
sion to 1. However, the following result shows that 2W−1 bits are
necessary. This result is surprising at first since 2W bits are suffi-
cient to represent arbitrary subsets, not just ranges.

THEOREM 1. For achieving a worst-case row expansion of 1
for a W -bit range, 2W−1 bits are necessary.

We prove a simple lemma before we present the proof of the theo-
rem. Let f(R) denote the ternary encoding of a range R.

LEMMA 1. Let R1 be a completely contained subrange of R2,
then f must satisfy the following properties: (a) if a bit position i is
specified (as 0 or 1) in f(R2), then it must be specified identically
in f(R1), (b) there must be at least one don’t-care bit in f(R2)
that is specified (as 0 or 1) in f(R1).

Range Encoding
= i 02

k
−i−11i

≥ i x2
k
−i−11i

< i 02
k
−ixi−1

[i, j] 02
k
−1−jxj−i1i

Table 3: Fence encoding of various types of ranges for a k-bit field
(or a chunk). The encoding of a number i consists of 2k−1−i zeros
followed by i ones. Note that the notation ab is used to denote both
regular expressions (e.g., 0i) and exponentiation (e.g., 2k).

PROOF. If property (a) is not satisfied, let I be the set of all the
positions where f(R2) has a bit bi = 0/1 and f(R1) has an entry
b′i 6= bi. Now, one can trivially construct an entry e with the ith

(for all i ∈ I) bit set to complement of bi such that e matches R1

but not R2.
If property (b) is not satisfied, then combining with property (a),

we have R1=R2.

PROOF. (of theorem) Observe that the optimal way to represent
the complete range Rn=[0, 2W−1] is xx. . .x. Now, consider the
range Rn−1=[0, 2W−2]. It follows from lemma 1 that the repre-
sentation of this range needs at least one more bit specified than
in Rn. Without loss of generality, let us set the first bit to 0, hence
giving the encoding 0x. . .x to Rn−1. Proceeding thus, one needs to
specify an extra bit all the way till the range [0, 1]. However, the last
bit can be used to represent the range [0, 0] also, by setting all the
bits to zero. Hence, the total number of bits needed is 2W−1.

Since the number of unused bits in a TCAM array is much
smaller than 2W−1, the natural question is whether we can use
the available unused bits to reduce the expansion of the database at
all (if not reduce the expansion all the way to one).

We answer this question by generalizing the fence encoding
technique. To form the ternary representation of a range, let us di-
vide the field into multiple chunks, where each chunk represents a
contiguous portion of the bits of W . Let W be split into l chunks,
with chunk i having ki bits. (Then, W = k0 + k1 + . . . + kl−1.)
Here, k0 corresponds to the most significant k0 bits, k1 corre-
sponds to the next k1 most significant bits and so on. Now, the
value in the bit-strings corresponding to each of the chunks is
mapped to their fence encoding, i.e., each of the ki bits is repre-
sented using 2ki − 1 bits. The width of our new encoding is hence
W ′ = (2k0 − 1) + . . . + (2kl−1 − 1).

To explain how ranges expand to ternary entries in this represen-
tation, we now present the analogy between the DIRPE encoding
and multibit trie-based algorithms that have been used in the lit-
erature for improving the performance of IP lookups [7, 13, 17].
Compared to unibit tries, multibit tries reduce tree depth at the ex-
pense of larger node sizes. Analogous to reduction of tree depth in
multibit tries, DIRPE achieves reduction in the number of TCAM
entries. DIRPE uses additional bits per entry to encode the range
field, which is analogous to having a larger node size per level.

Figure 2 shows a multibit trie view of DIRPE based on chunks.
We refer to the number of chunks, l, as the number of levels also.
In the example, W=8, R=[11, 54], l=3, k0=2, k1=3, and k2=3.
For a range [s, e], split chunk is defined as the first chunk (or level)
in which s and e differ. From the multibit view, it follows that each
level of the multibit trie representation generates at most two en-
tries: one corresponding to the branch corresponding to s and an-
other corresponding to e. However, the split chunk generates only
one entry; hence the worst-case expansion of a range is 2l−1. The
chunking strategy provides a tradeoff between worst-case expan-
sion and the number of bits required for encoding the range. As the

196

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Highlight

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

of bits
needed:

2k - 1 = 3 bits
0 1 2 3

of bits
needed:

2k - 1 = 7 bits

0 7

of bits
needed:

2k -1 = 7 bits

of bits
needed:

2k - 1 = 7 bits

No entries
corresponding
to this chunk

Entry corresponding to
split chunk:

000 00xxx11 xxxxxx

Entry corresponding to
<=e portion of last chunk:

000 0111111 0xxxxxx

Entry corresponding to
>=s portion of last chunk:

000 0000001 xxxx111

0 7 0 7

0

1

2 2

Figure 2: Multibit trie view of DIRPE. For the example, W=8 and
R=[11,54]

Form TCAM Entries (s, e, k1, k2, . . ., kl)
if (s = e)

return the TCAM encoding of s

// Form entries for the split chunk
c← Find Split Chunk (s, e), where split chunk

c is defined as the chunk such that vsc 6= vec

and vsi
= vei

for all i < c

Form TCAM entry corresponding to chunk c
that covers the range vsc + 1, . . . , vec − 1
Call this entry as Split Chunk TCAM Entry

if (c = l − 1)
return the TCAM entry formed

// Form entries corresponding to ≥ s portion
Find j such that for c < j < l, vsj

6= 0 and
vsi

= 0 for all i > j
If no such j is found

Adjust Split Chunk TCAM Entry to include vsc

else for (i = c + 1 to j)
Form TCAM entry corresponding to this chunk
that covers the range vsi

, . . . , 2ki − 1

// Form entries corresponding to ≤ e portion
Find j such that for c < j < l, vej

6= 2ki − 1

and vei
= 2ki − 1 for all i > j

If no such j is found
Adjust Split Chunk TCAM Entry to include vec

else for (i = c + 1 to j)
Form TCAM entry corresponding to this chunk
that covers the range 0, . . . , vei

return all TCAM entries formed

Form Search Key (Key)

Split Key into l chunks, Key0, . . ., Keyl−1 of sizes
k0, . . . , kl−1 respectively

for (i = 0 to l−1)
Ei ← Fence encoding of Keyi

// concatenate the fence encodings of the key chunks
return E1E2 . . . El−1

Metric
Prefix

Expansion

Region-based
Encoding

(with r regions)

DIRPE
(with k-bit
chunks)

DIRPE +
Region-based

Extra bits

Worst-case
capacity

degradation

Cost of an
incremental

update

Overhead on
the packet
processor

0 F(log2r + 2n-1
r

) F(W(2k-1)

k
- W) 2n-1

r
)+

F((2k-1) log2r
k

(2W-2)F (2log2r)F ()F2W
k

- 1 ()F2log2r

k

W
k

O(()O(WF) O(N) O(N)

None O((log2r+
2n-1

r
) F.2W)

Pre-computed
table of size:

(or)
O(nF) comparators

of width W bits

W.2k

k
O()

logic gates

Both pieces
of logic from

previous
two columns

)F

Table 4: Comparison of key metrics (see Section 2.1 for the list of met-
rics) for different range encoding schemes.

number of levels l increases, the worst-case expansion increases,
and since the chunk widths decrease, the width of the encoded
range also decreases.

The pseudocode for forming the TCAM entries and the search
key is presented above. Let R=[s, e] denote the range, vsi

and vei

denote the values of the chunk i of s and e respectively. We use the
same example as above to illustrate the algorithm.

Note that the prefixes needed to represent R are {0001xxxx,
000011xx, 0000101x, 00001001, 0010xxxx, 001100xx,
0011010x, 00110110}—a total of 8 prefixes.

Recall that l=3, k0=2, k1=3, and k2=3. Then, W ′=22 −
1+23−1+23−1=17, vs0

=0, vs1
=1, vs2

=3 and ve0
=0, ve1

=6,
ve2

=6. Note that R can be written as R=[013 − 066], with the
leading digit being a 2-bit number, and the trailing two digits be-
ing 3-bit octal numbers. The split chunk is 1. Following the al-
gorithm, the ternary entries needed to represent R are {02x−05x
= 000 00xxx11 xxxxxxx, 013−017 = 000 0000001 xxxx111,
060−066 = 000 0111111 0xxxxxx}—a total of 3 ternary entries.

3.3 Comparative Analysis and Evaluation of
Range Encoding Schemes

Table 4 presents a summary of an analytical comparison of the
different range encoding schemes based on the metrics (described
in Section 2.1). We consider an ACL with N rules, with each rule
having F range fields that are W bits wide. As mentioned in Sec-
tion 3.1.1, the prefix expansion scheme expands to (2W−2)F en-
tries in the worst-case.

For each range field, DIRPE with k-bit chunks results in W/k
chunks. Each of the chunks takes 2k−1 bits to represent, leading to
a total of (2k−1).W/k bits. Hence, the number of extra bits needed
is (2k−1).W/k−W . The worst case expansion is 2W/k−1, since
there can be 2 entries corresponding to each of the W/k levels ex-
cept the root level, which can have at most 1 entry. Finally, the addi-
tional logic introduced for modifying the search key can be imple-
mented in a few hundred gates; the logic does not affect throughput
of the search, though it adds a few cycles of latency to the search.

For region-based range encoding scheme, n unique ranges
form at most 2n−1 non-overlapping subranges, which are di-
vided equally into r regions. log

2
r bits are needed to represent

a region and (2n−1)/r bits are needed to represent the non-
overlapping subranges within that region, leading to a total of
log

2
r + (2n−1)/r extra bits per entry. Any range can span many

regions fully and at most 2 regions partially. The portion of the

197

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

Extra bits DIRPE Region-based Range Encoding
0 30 30
8 15 30
18 11 16
27 9 14
44 7 12

Table 5: Comparison of worst-case expansion of DIRPE and Region-
based range encoding schemes [11, 22] for various extra bits available
for a single field.To calculate worst case for region based scheme, we
assume that the database has less than 1024 unique ranges. Note that
using zero extra bits corresponds to using prefix expansion.

Extra bits DIRPE Region-based Range Encoding
0 2.69 2.69
8 2.08 2.33
18 1.79 2.17
36 1.57 1.58

Table 6: Comparison of expansion of DIRPE and database dependent
region-based range encoding for a real-life database with 215K rules.

range in the fully spanned regions can be represented using pre-
fix expansion using at most 2 log

2
r−2 entries, and the 2 partial

regions using 1 entry each, leading to a worst-case expansion of
2 log

2
r. We can further reduce the worst-case expansion of this

scheme by applying DIRPE on the representation of the range on
W ′=log

2
r bits.

Table 5 compares the worst-case expansion of DIRPE and the
region-based range encoding scheme for a database with 1024
unique ranges in a single field. For the latter scheme, the worst-case
was calculated by picking the value of r which produced the low-
est expansion while not exceeding the given number of extra bits.
DIRPE outperforms the region-based scheme for the same number
of additional bits used.

3.3.1 Evaluation of DIRPE on Real-life and Random
Databases

Table 6 compares the expansion of DIRPE and region-based
range encoding for a real-life database.2 Despite being database-
independent, DIRPE out-performs the database-dependent region-
based scheme even on real-life databases. For this particular
database, we found that there are 1408 unique ranges in one field
and 256 unique ranges in another field. As the number of unique
ranges increases, DIRPE would perform increasingly better. The
fact that DIRPE has better worst-case expansion and update prop-
erties makes it an attractive choice in many systems.

In Figure 3, we plotted the relative size of the database that can
be stored in a given amount of TCAM as a function of the num-
ber of DIRPE bits used, i.e., assuming that one has a TCAM large
enough to store a database, how larger a database can be stored in
the same TCAM as a function of number of DIRPE bits. We ob-
serve that by using 32 total extra bits (recall that rules have two
fields), we are able to accommodate about 50% more rules.

Figure 4 plots the variation of relative capacity improvement for
random database with two range fields. The graph also plots the
improvement in the worst-case bounds for comparison. Not surpris-
ingly, the results for a random database are much better—by using
32 bits per entry for DIRPE, the stored database size can be dou-
bled. When considering the worst-case prefix expansion, by using
32 bits for DIRPE, the size of the stored database can be quadru-
pled. To understand exactly how DIRPE improves the expansion, in
Figure 5, we plot the frequency distribution of the number of rules
2We implemented the region-based range encoding scheme based on the
description provided in [11].

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 10 20 30 40 50 60

R
el

at
iv

e
si

ze
 o

f d
at

ab
as

e

Number of DIRPE bits used

DIRPE bits used for src port
DIRPE bits used for dst port

DIRPE bits shared among ports

Figure 3: Relative size of the database that can be stored in a given
amount of TCAM using DIRPE. Real-world database with 215K rules
is used. The base for comparison (number of bits = 0) corresponds to
expanding ranges to prefixes.

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60

R
el

at
iv

e
si

ze
 o

f d
at

ab
as

e

Number of DIRPE bits used

Random DB, Two range fields
Worst-case-DB, Two range fields

Figure 4: Relative size of random and worst-case databases that can
be stored using DIRPE using various number of extra bits when rules
have two range fields. The base for comparison (number of bits = 0)
corresponds to expanding ranges to prefixes.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 5 10 15 20 25 30

N
um

be
r

of
 r

ul
es

 fo
r

a
gi

ve
n

ro
w

 e
xp

an
si

on
 fa

ct
or

Number of expanded TCAM entries

Range to Prefix
8 DIRPE bits

Figure 5: Distribution of expansion for different ranges on a random
database with a single range field.

198

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 20 40 60 80 100

R
el

at
iv

e
si

ze
 o

f d
at

ab
as

e

Number of DIRPE bits used

W = 8
W = 16
W = 24
W = 32

Figure 6: Variation of DIRPE effectiveness with width of field; the
databases are randomly generated and have a single range field.

Statistic 1998 database 2004 database 2004 database
Dest Port Src Port Dest Port

Range 1024-65535 1024-65535 16384-16480
Frequency 3683 20810 14999

Range 0-1023 1023-1340 1024-65535
Frequency 76 1328 10097

Range 33554-65535 0-1022 6970-7070
Frequency 39 1328 1328

Range 0-33432 1001-65535 2000-3467
Frequency 37 1328 1328
Remaining Various Various Various
Frequency 401 847 7585

Table 7: Table showing frequency occurrence of various unique ranges
in the 1998 and 2004 database. Note that the 1998 database does not
have any source port range.

that expand to a given number of TCAM entries for prefix expan-
sion and for DIRPE using 8 bits. Compared to prefix expansion,
DIRPE pushes the distribution to the left uniformly, instead of re-
ducing the expansion of a subset of ranges decided by the database.

An interesting question is how the effectiveness of DIRPE varies
for different widths of the range field. Note that for fields of larger
width, database-dependent schemes require prohibitively large sup-
port logic in the packet processor when databases have more than a
few tens of unique ranges. Figure 6 shows the effect of number of
extra bits used for various widths of the range field. Since the real-
life databases have only 16-bit range fields, we used only random
databases for this evaluation. From the figure, we observe that by
using W extra bits for DIRPE (where W is the field width), there
is a 50% increase in the database size that can be supported, and by
using 2W extra bits, there is a 80% increase in the database size.

3.4 Hybrid Approaches
If a database has a few ranges predominantly, database-

dependent schemes can be used in conjunction with DIRPE,
while still retaining the property that incremental updates are ef-
ficient. Here, we consider a very simple variant of the database-
dependent scheme—the k most frequent ranges are computed from
the database, and a single bit is assigned to each of the ranges, thus
reducing the expansion of all those ranges to 1.

Figure 7 plots the frequency distribution of the rules that expand
to a certain number of TCAM entries for a real-life database. The
first graph shows that using 2 bits per range field (based on the
frequency of occurrence of a range in the database) gives signif-
icant improvement. The second graph shows that even when the

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 10 100

F
ra

ct
io

n
of

 r
ul

es
 fo

r
a

gi
ve

n
ro

w
 e

xp
an

si
on

 fa
ct

or

Number of expanded TCAM entries

Range to Prefix
2 bits each for most frequent ranges

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 10 100
F

ra
ct

io
n

of
 r

ul
es

 fo
r

a
gi

ve
n

ro
w

 e
xp

an
si

on
 fa

ct
or

Number of expanded TCAM entries

2 bits each for most frequent ranges
16 DIRPE bits + 2 bits for most frequent ranges

Figure 7: Distribution of expansion for different ranges on a real-life
database with two range fields. The top figure shows how the frequency-
based range encoding improves prefix expansion. The bottom figure
shows how DIRPE further improves the expansion.

database-dependent scheme is used, DIRPE gives further improve-
ment over and above the database-dependent scheme.

Finally, we note that we found the usefulness of DIRPE is greater
in the newer database as compared to the older one. If the trend of
more range rules and more unique ranges continues (as illustrated
by Table 7, which presents the frequency distribution of unique
ranges in the databases from 1998 and 2004), we believe that the
benefits of DIRPE will further increase in the future.

3.5 Practical Considerations in Using DIRPE
Recall from Section 2 that we have 36 extra bits available. For ta-

bles with a single 16-bit range field, the DIRPE scheme with strides
4, 3, 3, 3, 3 can be used. 3 This encoding would use up 27 bits and
reduce the worst-case range expansion from 30 entries per rule to
9 entries per rule. The remaining 9 bits can be used to encode the
frequent ranges to achieve better real-life capacity.

For tables with two range fields, the field with more unique
ranges can use strides 2, 2, 3, 3, 3, 3, and the other field can use
strides 2, 2, 2, 2, 2, 3, 3. The extra bits used will be 18 and 13 re-
spectively. The remaining 5 bits can be used to encode the frequent
ranges for each of the two fields. These choices reduce the worst-
case expansion from 900 to 143 entries per rule. Applying this on
the 215K database, the expansion reduces from 2.69 to 1.12, a fac-
tor of more than two. Reducing the amount of TCAM needed on a
linecard by a factor of two today is significant, and the promise of
larger savings going forward (based on the database trends we have
observed) makes this scheme attractive.
3For reducing the worst-case expansion for a given number of extra bits, we
choose equal-width strides.

199

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

Number of bits used

N
um

be
r

of
 T

C
A

M
 r

ow
s

1

W

2W-2

2W-1

DIRPE using extra bits

Optimal
(Open problem)

Optimal for no row expansion

Prefix expansion
(previously known result)

Figure 8: Our contribution towards database-independent range en-
coding schemes from a theoretical perspective. The previously known
result was expansion of ranges to prefixes. Our algorithm DIRPE uses
extra unused bits to achieve better worst-case expansion. For achieving
a row expansion of 1, we have shown that 2W −1 bits are necessary, but
finding the optimal database-independent encoding is an open problem.

3.6 Future Directions
We have shown how we can reduce the row expansion of range

rules by using the additional bits in a TCAM array in a database-
independent manner. The question then is how far from optimal is
DIRPE in the following sense: To bound the worst case row expan-
sion to E, what is the minimum extra bits needed, and what is the
corresponding encoding? Given B extra bits, what is the least worst
case row expansion, and what is the corresponding encoding?

When the desired row expansion is 1, we have shown that 2W−1
is necessary, but finding the optimal database-independent encod-
ing is an open problem. Figure 8 captures the state-of-the-art in
database-independent range encoding to the best of our knowledge.

4. MULTI-MATCH CLASSIFICATION
Traditional packet classification requires that, for a given search

key, the best matching rule be found. However, recently, many ap-
plications such as load balancers and intrusion detection systems
require finding multiple (or sometimes all) matches. TCAMs report
only the first matching entry. To enable these applications, schemes
to find multiple matches are necessary. We now formally define the
multi-match classification problem.

Multi-match Classification Problem:
Consider a database Fdat consisting of N rules with cost

cost(Fi) associated with each rule Fi. The multi-match classifi-
cation problem for finding (at most) k rules that match a search key
S is defined as follows.
Find rules F mult

1 , . . . , F mult
k in Fdat such that:

• Each of F mult
i is a rule match for S.

• There is no other rule Fj in Fdat such that Fj is a match for
S and cost(Fj) < cost(F mult

i) for some i ∈ [1, k].

We define the multi-match degree of an ACL database as the
maximum number of rules that can potentially match a key. In other
words, if the multi-match degree of a database is M , then there
exists a key S such that M rules match S and there is no key that
matches more than M rules. Figure 9 shows an example in which
the multi-match degree is 3.

Figure 10 shows the distribution of multi-match degree across
112 ACLs in a router database with a total of 215K rules. The

[11xxxxxx
 1xxx0101
 xxxx0100
 010xxxx0

 xxxxxxxx]

Search Key =
11010100

first match
(F1)

11xxxxxx

Total # of 8-bit
rules = 5

Set of all rules that
match F1 = 11xxxxxx

second
match (F2)
xxxx0100

[xxxxxxxx]

3rd match
(F3)

xxxxxxxx
[]

Set of all rules that match
11xxxxxx AND xxxx0100 No more rules to

match

[1xxx0101
 xxxx0100

 xxxxxxxx]

second
match

Figure 9: Example showing set of possible matches at every step of
multi-match classification.

13

7

24

36

17

13

1 1
0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8

Multi-match degree (M)

o

f
A

C
L

s

Figure 10: Frequency distribution of multi-match degrees (maximum
number of rules that can match any key) for 112 ACLs.

largest ACL had 11781 rules. We now present a summary of the
multi-match characteristics we observed from this database.

• The maximum multi-match degree is 8. The set of rules in
one such multi-match group is shown in Figure 11.
• Most ACLs have a multi-match degree of 4 or 5.
• The multi-match degree does not correlate well with the size

of the databases. Some ACLs with as few as 97 rules as well
as some with as high as 3060 rules both have the same multi-
match degree of 5. Another ACL with only 340 rules has a
multi-match degree of 8.
• The snort database [2] has 2700 signatures, each having an

ACL specified on the packet header, and further patterns
based on packet content. We found that the set of ACLs that
were found in all these signatures comprised 276 rules. The
multi-match degree of all the unique ACL headers was 4.

Thus, real databases have several multiple matching rules; we
now review earlier approaches to find multiple matches.

4.1 Earlier Approaches

4.1.1 Entry-Invalidation Scheme
Entry-invalidation scheme, one of the earliest and simplest

schemes, maintains the state of a multi-match search in the database
itself. A valid bit, an additional bit in the TCAM array, is associ-
ated with each entry in the TCAM. Searches are performed over a
subset of TCAM entries by setting the valid bits for those entries
only. When the search starts, the valid bit is set for all the entries.
Let the rule that matches be Fj . Now, the valid bit of Fj is unset

200

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Highlight

liwenjun
Highlight

liwenjun
Pencil

liwenjun
Highlight

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Highlight

liwenjun
Pencil

access-list 105 tcp 81.184.207.0 0.0.0.255 148.79.89.193 0.0.0.0 eq 6000

access-list 105 tcp 81.184.207.0 0.0.0.255 148.79.89.193 0.0.0.0 gt 1023

access-list 105 ip 81.184.207.202 0.0.0.0 148.79.89.193 0.0.0.0

access-list 105 tcp 81.184.207.202 0.0.0.0 148.79.89.193 0.0.0.0 lt 20608

access-list 105 tcp 81.184.207.202 0.0.0.0 148.79.89.193 0.0.0.0 lt 20616

access-list 105 tcp 0.0.0.0 255.255.255.255 0.0.0.0 255.255.255.255

access-list 105 ip 0.0.0.0 255.255.255.255 148.0.0.0 0.255.255.255

access-list 105 ip 0.0.0.0 255.255.255.255 0.0.0.0 255.255.255.255

Figure 11: Real-life example of a multi-match group with multi-match
degree of 8. ip rules will match tcp rules as well, since TCP is an IP-
based protocol.

and the same search key is issued again. The process is repeated till
the required number of (or no more) matches are found.

The total number of cycles taken for finding k matches is
k.(Tinvalidate write cycle+Tsearch cycle+Trevalidate write cycle).
The search operation typically takes a single cycle while writes take
3 cycles. Hence, the total number of cycles per multi-match is 7.

The entry-invalidation scheme alters the state of the database
during the course of the algorithm. Hence, it is infeasible to use this
scheme in a multi-threaded environment such as today’s packet pro-
cessors, where searches are issued from multiple packet processing
threads that have simultaneous access to the TCAM device.

To support multiple threads, the entry-invalidation scheme can
be extended trivially to use many valid bits per TCAM entry, with
each valid bit keeping track of a single thread (independent of the
other bits). However, as the number of threads increases (today’s
packet processing systems support at least 64 threads and the num-
ber is rising), the overhead of the valid bits becomes prohibitive.
For example, the Intel IXP2800 network processor supports up to
256 threads [10]. Since the width of each TCAM entry is fixed and
allocated in discrete quantities (72, 144, 288 or 576 bits), allocat-
ing a large number of bits as valid bits might not be feasible as it
would severely affect the size of databases that can be stored.

4.1.2 Geometric Intersection-based Scheme
The scheme described in [25] constructs the set of matching ge-

ometric intersections (cross-products) of fields and places them in
the TCAM. While this elegant scheme has a high search through-
put, it does not scale well in capacity—the number of TCAM en-
tries needed per rule in an ACL might be very large. For all the 112
ACLs in our database, we noticed an expansion factor of 25-100.
For example, we found a real-life ACL of 32 rules leading to 11263
TCAM entries.

In the next section, we present our multi-match scheme, which
works well in multi-threaded systems, provides deterministic
worst-case search bounds and scales in memory usage.

4.2 Multi-match Using Discriminators (MUD)
We first present the basic idea behind MUD. Let the result of

searching a TCAM with a key be the rule with index j. To get
the next matching result from the TCAM, we need to perform the
search on all the entries after index j. To accomplish this, we use
a simple idea: along with each TCAM entry, store a discriminator
field that encodes the index of that entry. The TCAM entries after

Multi-Match MUD (key)
Initialize discriminator prefix list:

D← {‘xx . . . xx’}
while (D is not empty)

d← D.pop(). Let d represent the range [s, e].
R← TCAM Search(d, key)

if (R != NULL)
Let i be the index of rule R

Let D′ be the set of discriminator prefixes
for the range [i + 1, e]

D ← D.push(D′)

end-while
return TCAM Match List

Figure 12: MUD search logic in the packet processor interfacing with
TCAMs. The control plane software sets up the TCAM entries and
chooses discriminators for each of the entries appropriately.

index j have discriminator field values that are greater than j. We
expand ‘> j’ to prefixes, and specify these prefixes in the discrimi-
nator field in subsequent searches to search through the TCAM en-
tries that appear after j. The benefits that MUD offers—support for
multi-threaded environment and low update cost—come at the ex-
pense of search cycles; however, as we show in Table 8, MUD can
still support multi-match classification at multi-gigabit link speeds.

To specify prefixes in the search key, we use a well-known search
capability called global masking that TCAMs provide. When a key
is searched, TCAMs allow each bit position to be masked out, i.e.,
set to x. If a bit position is masked out, then that bit position in
the key will not be compared against the corresponding bit in each
entry, but will be deemed to have matched. For example, using a
global mask xxxx111 would mean that only the 3 least significant
bits are actually compared, and the 4 most significant bits are not
compared.

We now describe the algorithm in detail. To the original set of
rules, R1, . . . , RN , we prepend a discriminator field of d bits which
indicates the index of the rule within the ACL; i.e., rule Ri will have
the value i in the field. The minimum number of bits required for
the discriminator field for a database with N rules is d = log

2
N .

When the search for a key S starts, the discriminator field in the
key is masked out completely, resulting in the entire database being
searched. Let the first match be rule Rj . The next search has to con-
sider rules with index greater than j, i.e., rules with discriminator
greater than j. By using discriminators we have reduced the multi-
match problem to the range representation problem. In the case of
DIRPE, the rules had ranges that had to be represented as ternary
strings. In the case of MUD, the discriminator in the search key has
a range that needs to be represented as ternary strings.

Let us consider an example in which we use 4 bits for the dis-
criminator field (i.e., the database has at most 16 entries). Let the
first match occur at index 5 (i.e., 0101). The discriminator prefixes
needed for searching the rest of the database (starting from index
6) are 011x and 1xxx, representing the ranges [6, 7] and [8, 15] re-
spectively. If any match is found with any of these two prefixes as
the discriminator field in the search key, then the process is repeated
recursively.

Figure 12 shows the steps that are needed to issue search keys
for locating matches—it is very simple and can be easily included
in any device interfacing with the TCAM.

201

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Highlight

liwenjun
Pencil

liwenjun
Pencil

4.3 Improving Performance of MUD
We now describe a few optimizations for improving the perfor-

mance of MUD.

4.3.1 Assigning Discriminators to Sets of Entries
In the baseline MUD scheme, for a database with N rules, each

rule is given unique discriminator values between 0 and N−1, re-
sulting in log

2
N bits for the discriminator field. We present an

optimization based on the following intuition: if several rules can
be grouped into a set such that any search key can match at most
one rule in this set, then all the rules in this set can be given the
same discriminator value. For example, for getting all the matches
from a database of prefixes, we would set the discriminator value
to be the length of a prefix. This is because any key can match only
one prefix among the prefixes of the same length.

A mask of a rule is a bit string indicating the location of specified
bits (0 or 1) and wildcard bits (x) in the rule. To compute the mask,
a 0/1 in the rule is replaced with a 1 and an x is replaced with
a 0. For example, two rules 10x11xx0 and 11x01xx1 have the
same mask 11011001. In an ACL database, there can only be one
matching entry among rules with the same mask. Hence, the same
discriminator value can be assigned to all entries with the same
mask. This optimization would reduce the number of bits needed
for the discriminator to log

2
(number of distinct masks). However,

since order of multi-matches is not retained, for obtaining the first
k matches, one would need to find all matches and pick the first k.

Our database has 215183 rules, which when expanded us-
ing range-to-prefix conversion correspond to 1694 distinct masks.
Hence, for our database, the discriminator field can be encoded us-
ing 11 bits.

4.3.2 Assigning Discriminators using DIRPE
To represent N discriminator values (which could be the number

of unique masks), at least log
2
N bits are needed. We now show

that, by using a wider representation for the discriminator, we can
reduce the worst-case number of searches.

Recall that to address the range expansion problem, we proposed
DIRPE, which reduced the expansion of ranges by using additional
bits. Analogous to the range expansion problem in which ranges
appear in the ACL rules and are mapped to multiple TCAM en-
tries, in the multi-match problem the ranges appear in the search
key leading to multiple TCAM searches. Drawing from the anal-
ogy, for MUD, we can use the DIRPE algorithm to encode the dis-
criminator keys corresponding to searching the range ‘> j’, thus
reducing the worst-case number of searches. Hence, even though
the minimum number of discriminator bits needed is log

2
(number

of distinct masks), by using DIRPE, we can add extra bits to reduce
the worst-case number of searches.

Furthermore, in the case of MUD, since only ranges of the type
‘> j’ are needed, the worst-case number of ternary entries is equal
to the number of chunks used in DIRPE.

d = log
2
(number of unique discriminator values) is the mini-

mum number of bits needed for the discriminator field. Dividing
this into chunks of r bits each gives d/r chunks. Note that MUD
issues several searches to cover all chunks. Hence we use the fol-
lowing encoding for the discriminator field: log

2
(d/r) bits to indi-

cate the chunk-id, d − r bits to represent the bits leading up to the
chunk and 2r − 1 bits to encode the range in the chunk. Thus, the
discriminator width, d′, is log

2
(d/r) + d− r + 2r − 1.

Table 8 shows the links speeds that can be supported for vari-
ous values of unique discriminators, number of discriminator bits
using DIRPE and number of matches per multi-match. The main
trend we observe is that for the same number of unique discrimina-

of Unique Max. matches Disc. width Link Gbps
Disc. Values per multi-match using DIRPE with MUD

512 4 9 2.40
512 4 13 5.00
512 4 15 7.81
512 5 9 1.84
512 5 13 3.91
512 5 15 6.25

2048 4 11 1.95
2048 4 15 4.03

Table 8: Link speed for finding all matches using the MUD scheme
for different values of discriminator bits. We assume a base TCAM
throughput of 125 million searches per second. Minimum size packet
size = 64 bytes for wire speed operation (See [1]). 5MPPS corresponds
to 2.5Gbps.

tors, greater the number of discriminator bits used (using DIRPE),
higher is the link speed that can be supported. For example, com-
pare the first three rows of the table. Also, the trend is independent
of the number of discriminator values (see last two rows of the ta-
ble for links speeds with 2048 unique discriminators) and the num-
ber of multi-matches (rows 4-6 show the same trend for 5 multi-
matches). Since MUD does not increase the number of TCAM en-
tries, we can replicate the tables if higher search throughput is de-
sired.

4.3.3 A Set Pruning-Based Approach
We also considered an algorithm that is based on set pruning ap-

proach for improving the performance of MUD. The algorithm is
based on the simple idea: When some matches are found, the to-
tal number of entries that can possibly match the search key must
reduce. Hence, after finding the first few matches, if the list of po-
tential matches is small, then they can be searched quickly by a
linear search.

Define a pruned set as the list of entries that can potentially
match a key after i matches are found. Denote the size of the largest
such pruned set after i matches by Hi. Using the real-life database,
we found that Hi does not decrease below 10 till several matches
are found (see Figure 13). In addition, the time for precomputation
of pruned sets was also very large. Though this simple heuristic
proved ineffective, our experiments shed some light on the charac-
teristics of real-life databases.

4.4 Comparative Analysis of MUD and Other
Schemes

Table 9 presents the comparison of MUD with earlier approaches
based on the metrics in Section 2.1. The invalidation scheme does
not work well in multi-threaded systems. Both the invalidation
scheme and MUD require only one TCAM entry per rule, but the
geometric intersection scheme does not scale well in the worst-case
number of TCAM entries needed per rule. Even for the real-life
database we used, for all the 112 ACLs, the expansion factor was
between 25 and 100.

When rules change, updating ACL tables has traditionally in-
volved manual intervention, and hence the ability to perform incre-
mental updates has not been a serious requirement. But with the
adoption of automated intrusion detection, there is an increasing
need to update the tables incrementally. For MUD, the discrim-
inator field in the entries need to be updated with their new in-
dex location. Hence, both the entry-invalidation scheme and the
MUD scheme support high update rates—cost of updating N rules
is O(N) —same as that required to maintain the entries for sin-
gle match classification. Update rates of few ten thousand up-

202

liwenjun
Highlight

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

liwenjun
Pencil

0

50

100

150

200

250

300

350

1 2 3 4 5 6

i = Number of Matches found

H
(i

)
=

S
iz

e
o

f
th

e
p

ru
n

ed
 s

et
 a

ft
er

 it
h

m

at
ch

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 3 4 5

i = Number of Matches found

H
(i

)
=

S
iz

e
o

f
th

e
p

ru
n

ed
 s

et
 a

ft
er

 it
h

m

at
ch

Figure 13: Size of pruned sets for ACLs with (a) < 300 rules (on the left), (b) > 500 rules (on the right). The x-axis shows the number of matches
completed during a multi-match classification. The y-axis is the size of the largest pruned set after the i-th match has been found.

Metric
Entry

Invalidation
Geometric

Intersection-based
MUD

Multi-threading
support

Cycles for
k multi-matches

Overhead on
the packet
processor

No Yes Yes

7k 1

None

Small state machine
logic; can be

implemented using a
few hundred gates
or a few microcode

instructions

1 + d + (d-1)(k-2)

Update cost O(NF) O(N)O(N)

NWorst-case TCAM
entries for N rules

NO(NF)

Small state machine
logic; can be

implemented using a
few hundred gates
or a few microcode

instructions

Extra bits 0 0
without DIRPE: d

with DIRPE: 1 + d(k-1)
r

with DIRPE:
log2(d/r) + (d-r) + (2r-1)

Table 9: Comparison of key metrics for multi-match schemes. k is the
number of matching rules to be found, N is the number of rules in the
database and F is the number of fields in a rule. d = log2(number of
unique discriminator values). r is the chunk width ≥ 2

dates per second can be easily achieved. In contrast, the geometric
intersection-based scheme can require several minutes of recompu-
tation each time a new rule is added.

MUD supports high density, fast updates and multi-threading at
the cost of extra searches through the TCAM. We now present a
simple worst-case analysis for the number of TCAM searches for
finding k matches. After the first match i is found, the subsequent
searches correspond to the discriminator prefixes needed to repre-
sent > i, which is at most d prefixes. After the second match, note
that the worst-case number of prefixes is at most d − 1. Hence,
for finding k matching rules, when d ≥ (k − 1), the worst-case
number of total searches is 1 + d + (k − 2)(d − 1). When us-
ing DIRPE with d′ = 1 + (d/r)(k − 1), the search throughput
is further increased. The cost of additional searches does not affect
the multi-match performance adversely: as shown in Table 8, MUD
can support multi-match classification at multi-gigabit link speeds.

4.4.1 Practical Considerations in Using MUD
Both DIRPE and MUD use extra unused bits from the TCAM ar-

ray. Hence, when DIRPE and MUD are used simultaneously (e.g.,
when multi-match is performed using a database containing range

rules), the available extra bits must be shared between the schemes
based on the desired performance and density. Recall that typical
TCAMs today have about 36 extra bits when used with IP ACLs.
If MUD uses 12 bits (the large real-life dataset we used required
11 bits for MUD), DIRPE would have 24 bits. A possible way of
splitting the bits is to assign 16 DIRPE bits to the first range field
and 8 bits to the second range field; using such a split, we get an
expansion of 1.31—which is comparable to the expansion obtained
when all the bits were used for DIRPE.

4.5 Future Directions
While the deterministic search throughput of TCAMs makes it

attractive compared to RAM, the cost factor makes it difficult to
scale TCAMs to millions of rules. We plan to investigate how one
can use a combination of TCAM and RAM to scale both single
and multi-match classification to millions of rules with high search
performance in real-life databases. Here, we present the basic idea
we plan to pursue, and present preliminary results that show that
the idea holds promise.

Several schemes for single match classification that divide the
rules into buckets have been proposed [14, 21, 24]. If we partition
the rules into buckets of size T using one such scheme, then we can
store one TCAM entry corresponding to each bucket and store all
the rules of a single bucket in RAM. During a search, the TCAM
is first searched and then the buckets corresponding to all matching
TCAM entries are searched. The number of rules that need to be ac-
cessed from RAM is then M ×T , where M is the multi-match de-
gree of the TCAM. Since we found that even large router databases
have small multi-match degree (see Figure 13), we expect this tech-
nique to work well in real databases. A similar observation on the
two prefix fields in the rules is made in [1] and a corresponding
extended grid-of-tries with path compression is described.

We implemented a simple variation of this heuristic in which
we recursively walk down the rule tree, splitting the rules based
on whether the bit in the rule is 0, 1, or x. Figure 14 shows the
variation of the number of TCAM entries and the number of RAM
entries that need to be accessed per classification, as a function of
the bucket size, T . The desired search rate dictates the number of
RAM accesses allowed per search. From the figure, we see that the
number of TCAM entries needed reduces as the number of RAM
accesses increases. Hence, depending on system requirements—
available RAM bandwidth, desired search throughput and cost—
we can choose the point in the tradeoff curve by using the appro-
priate value of the bucket size.

203

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1 2 4 8 16 32 64
Bucket size, T

N
u

m
b

er
 o

f
T

C
A

M
 E

n
tr

ie
s

0

50

100

150

200

250

300

Number of TCAM Entries vs T

Max. Number of RAM Entries accessed per multi-match vs T

M
ax

im
u

m
 N

u
m

b
er

 o
f

R
A

M
 E

n
tr

ie
s

ac
ce

ss
ed

 p
er

 m
u

lt
i-

m
at

ch
 c

la
ss

if
ic

at
io

n

Figure 14: Variation of number of TCAM entries to be stored and
maximum number of RAM entries to be accessed per classification, as
a function of bucket size, T. The total number of RAM entries to be
stored is the total number of rules in the database (after converting
ranges to prefixes). A representative subset of the database was used.

5. CONCLUSIONS
Ternary CAMs have been widely used in the industry for packet

classification for databases with up to hundreds of thousands of
rules. In this paper, we presented algorithms that further the state-
of-the-art for solving two important problems that arise while using
TCAMs. Our first algorithm, Database Independent Range PreEn-
coding (DIRPE), addresses the problem of efficient representation
of range rules in TCAMs. DIRPE reduces the worst-case expansion
of range rules, scales to a large number of ranges, and has good in-
cremental update properties.

Our second algorithm, Multi-match Using Discriminators
(MUD), addresses the issue of finding multiple matches for a search
key. The key benefit of MUD is that it does not store per-search
state and hence is suited for multi-threaded environments. MUD
does not increase the number of TCAM entries and hence scales to
large databases. The benefits of MUD are obtained at the expense
of additional searches; but we show that MUD can still support
multi-match classification at multi-gigabit link speeds.

Our schemes do not require any change to TCAMs. Both the al-
gorithms rely on extra bits in the TCAM entry; they can be used
in conjunction by using disjoint sets of extra bits in the TCAM en-
try. We evaluated the algorithms using a large real-life router ACL
database, using a randomly generated database, as well as using
worst-case analysis.

We believe that the following future directions are interesting.
The first direction deals with finding the optimal encoding of ranges
when a certain number of ternary bits are available. The second di-
rection is to investigate how TCAMs and RAMs can be combined
to achieve deterministic search throughput at low costs while scal-
ing to real-life databases with millions of rules; the preliminary re-
sults based on the simple heuristic we considered are encouraging.

6. REFERENCES
[1] F. Baboescu, S. Singh, and G. Varghese. Packet

Classification for Core Routers: Is there an Alternative to
CAMs? In Proc. of IEEE INFOCOM, 2003.

[2] J. Beale. Snort 2.1 Intrusion Detection, Second Edn.
Syngress, 2004.

[3] J. Bolaria and L. Gwennap. A Guide to Search Engines and
Networking Memory. http://www.linleygroup.
com/Reports/memory_guide.html, April 2004.

[4] Computer Associates. eTrust Intrusion Detection System.
http://www3.ca.com.

[5] Cypress Semiconductor Corp. Content addressable memory.
http://www.cypress.com/.

[6] Dell’oro. Layer3 Switch Router Market. July 2004.
[7] W. Eatherton. Full Tree Bit Map: Hardware/Software IP

Lookup Algorithms with Incremental Updates. EE Masters
Thesis, Washington University, April 1999.

[8] P. Gupta and N. McKeown. Packet Classification on Multiple
Fields. In Proc. of ACM SIGCOMM, 1999.

[9] Integrated Device Technology, Inc. Content addressable
memory. http://www.idt.com/.

[10] Intel Corp. Intel IXP2800 Network Processor.
http://www.intel.com/design/network/
products/npfamily/ixp2800.htm.

[11] H. Liu. Efficient Mapping of Range Classifier into
Ternary-CAM. In Proc. of Hot Interconnects, 2002.

[12] Netlogic Microsystems. Content addressable memory.
http://www.netlogicmicro.com/.

[13] S. Nilsson and G. Karlsson. Fast Address Look-Up for
Internet Routers. Proceedings of IEEE Broadband
Communications’98, Stuttgart, Germany, April 1998.

[14] L. Qiu, G. Varghese, and S. Suri. Fast Firewall
Implementations for Software and Hardware-based Routers.
In Proc. of ICNP, 2001.

[15] S. Singh, F. Baboescu, G. Varghese, and J. Wang. Packet
Classification using Multidimensional Cutting. In Proc. of
ACM SIGCOMM, 2003.

[16] E. Spitznagel, D. Taylor, and J. Turner. Packet Classification
Using Extended TCAMs. In Proc. of ICNP, 2003.

[17] V. Srinivasan and G. Varghese. Faster IP Lookups using
Controlled Prefix Expansion. ACM TOCS, February 1999.

[18] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel. Fast
and Scalable Layer Four Switching. In Proc. of ACM
SIGCOMM, 1998.

[19] D. E. Taylor. Survey and Taxonomy of Packet Classification
Techniques. Technical Report WUCSE-2004-24,
Washington Univ., St. Louis, May 2004.

[20] D. E. Taylor and J. Turner. Scalable Packet Classification
using Distributed Crossproducting of Field Labels. Technical
Report WUCSE-2004-38, Washington Univ., St. Louis,
2004.

[21] P. Tsuchiya. A Search Algorithm for Table Entries with
Non-contiguous Wildcarding. Unpublished document, 1992.

[22] J. van Lunteren and T. Engbersen. Fast and Scalable Packet
Classification. IEEE JSAC, 21:560–571, May 2003.

[23] G. Varghese. Network Algorithmics: An Interdisciplinary
Approach to Designing Fast Networked Devices. Morgan
Kaufmann Publishers, Inc., 2004.

[24] T. Y. C. Woo. A Modular Approach to Packet Classification:
Algorithms and Results. In Proc. of IEEE INFOCOM, 2000.

[25] F. Yu and R. H. Katz. Efficient Multi-Match Packet
Classification with TCAM. In Proc. of HotI, 2004.

204

liwenjun
Highlight

liwenjun
Pencil

liwenjun
Pencil

