
Algorithms for Advanced Packet
Classification with Ternary CAMs

Karthik Lakshminarayanan
UC Berkeley

Joint work with
Anand Rangarajan and Srinivasan Venkatachary

(Cypress Semiconductor)

Packet Processing Environment

• Packet matches a set of rules based on the header
• Examples: routers, intrusion detection systems

Rule: acl-id src-addr src-port dst-addr dst-port proto
(e.g. acl1231 128.32.0.0/8 0-1023 32.12.1.1/16 1024 tcp)

Hdr Payload

Search Key

permit/deny,
update counter

Rule Action

… …

ACL Database

Packet Processing Environment

Rule: acl-id src-addr src-port dst-addr dst-port proto
(e.g. acl1231 128.32.0.0/8 0-1023 32.12.1.1/16 1024 tcp)

Hdr Payload

Search Key

permit/deny,
update counter

Rule Action

… …

ACL Database
How are the rules stored?

• TCAMs gaining widespread deployment
– 6 million TCAM devices deployed
– Used in multi-gigabit systems that have O(10,000) rules

Ternary Content Addressable Memory

• RAM: input = address, output = value
• CAM: input = value, output = address

Ternary Content Addressable Memory
• Memory device with fixed-width arrays
• Each bit is 0, 1 or x (don’t care)
• Search is performed against all entries in parallel

and the first result is returned

width = W bits

TCAM
row1

row2

rown

…

00100x1x001110x0x
01110xxx001100xxx

1111101x1101000xx
width = W bits

Search key

011101xx001100x10 Output
is “ 2”

Ternary Content Addressable Memory
• Benefits: Deterministic Search Throughput

– single cycle search irrespective of search key

width = W bits

TCAM
row1

row2

rown

…

00100x1x001110x0x
01110xxx001100xxx

1111101x1101000xx
width = W bits

Search key

011101xx001100x10 Output
is “ 2”

Problems

• Range Representation Problem

• Multimatch Classification Problem

No modifications to TCAMs and simple
���� Easy to deploy

Problems

• Range Representation Problem

• Multimatch Classification Problem

Range Representation Problem

• (Recall that rules contain prefixes and ranges)
• Representing prefixes in ternary is trivial

– IP address prefixes present in rules
– e.g. 128.32.136.0/24 would contain 8 ‘x’s at the end

• Representing arbitrary ranges is not easy though
– port fields might contain ranges
– e.g. some security applications may allow ports

1024-65535 only
Problem Statement: Given a range R, find the
minimum number of ternary entr ies to represent R

Why is efficient range representation an
important problem?

Number of range rules has increased over time

Why is efficient range representation an
important problem?

Number of unique ranges have increased over time

Earlier Approaches – I
Prefix expansion of ranges:

– express ranges as a union of prefixes
– have a separate TCAM entry for each prefix

• Example: the range [3,12] over a 4-bit field
would expand to:
– 0011 (3), 01xx (4-7), 10xx (8-11) and 1100 (12)
– expansion: the number of entries a rule expands to

• Worst-case expansion for a W-bit field is 2W-2
– example: [1,14] would expand to 0001, 001x, 01xx,

10xx, 110x, 1110
– 16-bit port field expands to 30 entries

Why is efficient range representation an
important problem?

Two range fields – multiplicative effect

Earlier Approaches – II

Database-dependent encoding:
– observation: TCAM array has some unused bits
– use these additional bits to encode commonly

occurring ranges in the database

• TCAMs with IP ACLs have ~ 36 extra bits
– 144-bit wide TCAMs
– 104-bits + 4-bits typically used for IP ACL rules

Earlier Approaches – II

Database-dependent encoding:
– observation: TCAM array has some unused bits
– use these additional bits to encode commonly

occurring ranges in the database
• Example:

Address Port …
12.123.0.0/16 20-24 …
32.12.13.0/24 1024- …
128.0.0.0/8 20-24 …

Set extra bit to 1

Set extra bit to 1
Set extra bit to x

If search key falls in 20-24, set extra bit to 1, else set it to 0

Earlier Approaches – II

Database-dependent encoding:
– observation: TCAM array has some unused bits
– use these additional bits to encode commonly

occurring ranges in the database
• Improved version: Region-based Range Encoding
• Disadvantages:

– database dependent � incremental update is hard

Database-Independent Range Pre-
Encoding (DIRPE)

• Key insight: use additional bits in a database
independent way
– wider representation of ranges
– reduce expansion in the worst-case

DIRPE: Fence Encoding

• Fence encoding (W-bit field)
– total of 2W-1 bits
– Encoding(0) = 0000000

Encoding(2) = 0000011
Encoding(4) = 0001111

– Encoding[2,4] = 000xx11

• Using 2W-1 bits, fence encoding achieves an
expansion of 1

• Theorem: For achieving a worst-case row expansion
of 1 for a W-bit range, 2W-1 bits are necessary

• Fence encoding (W-bit field)
– total of 2W-1 bits
– Encoding(0) = 0000000

Encoding(2) = 0000011
Encoding(4) = 0001111

– Encoding[2,4] = 000xx11

DIRPE: Using the Available Extra Bits

• Two extremes:
– no extra bits � worst case expansion is 2W–2
– 2W–W–1 extra bits � worst case expansion is 1

• Is there something in between?
– appropriate worst-case based on number of

extra bits available

DIRPE: Splitting the Range Field

• Procedure:
– split W-bit field into multiple chunks
– encode each chunk using fence encoding
– “combine” the chunks to form ternary entries

Combining chunks: analogous to multi-bit tries

W bits

k1 bitsk0 bits k2 bits

Unibit view of DIRPE (Prefix expansion)

• W=3, split into three 1-bit chunks; Range=[1,6]
• Each level can contribute to at most 2 prefixes

(but for the top level)

x x x

0xx 1xx

00x 01x 11x10x

000 001 010 011 100 101 110 111

x x x
[0-7]

[0-3] [4-7]

[6-7][4-5][2-3][0-1]

Multi-bit view of DIRPE

Worst case
expansion
= 2W/k – 1

Number of extra
bits needed

= (2k-1)W/k - W

• 9-bit field (W=9)
• 3 chunks, 3 bits wide
• Range = [11,54]

= [013, 066]
…

… …

0-7 0-7 0-7

Width of each encoded chunk = 23-1 = 7 bits

0-0 0-7 0-7

0-0 2-5 0-7

……

0-0 1-1 0-7 0-0 6-6 0-7

0-0 1-1 3-7 0-0 1-1 0-6

[11,15]

[16,47]

[48,54]
000 00xxx11 xxxxxxx

000 0000001 xxxx111 000 0111111 0xxxxxx

Comparison of Expansion

Worst-case
expansion

Real-life
expansion

Metric
Prefix

Expansion

Region-based
Encoding

(with r regions)

DIRPE
(with k-bit
chunks)

DIRPE +
Region-based

Extra bits

Worst-case
capacity

degradation

Cost of an
incremental

update

Overhead on
the packet
processor

0 F(log2r + 2n-1
r

) F(W(2k-1)

k
- W) 2n-1

r
)+

F((2k-1) log2r
k

(2W-2)F (2log2r)F ()F2W
k

- 1 ()F2log2r

k

W
k

O(()O(WF) O(N) O(N)

None O((log2r+
2n-1

r
) F.2W)

Pre-computed
table of size:

(or)
O(nF) comparators

of width W bits

W.2k

k
O()

logic gates

Both pieces
of logic from

previous
two columns

)F

DIRPE: Summary

Database independent
Scales well for large databases
Good incremental update properties

Additional bits needed
Small logic needed for modifying search key

Does not affect throughput

Problems

• Range Expansion Problem

• Multimatch Classification Problem

Multimatch Classification Problem

• TCAM search primitive: return first
matching entry for a key

• Multimatch requirement: return k matches
(or all matches) for a key
– security applications where all signatures that

match this packet need to be found
– accounting applications where counters have to

be updated for all matching entries

Earlier Approaches

Entry Invalidation scheme:
– maintain state of multimatch using an

additional bit in TCAM called “valid” bit

TCAM array

…

00100x1x001110x0x
01110xxx001100xxx

1111101x1101000xx

Search key

011101xx001100x10

x
x

x

1

valid bit

valid bit

0 match

Earlier Approaches

Entry Invalidation scheme:
– maintain state of multimatch using an

additional bit in TCAM called “valid” bit

• Disadvantage:
– ill-suited for multi-threaded environments

Earlier Approaches

Geometric intersection scheme:
– construct geometric intersection (cross-

products) of the fields and place in TCAM
– pre-processing step is expensive
– search is fast

• Disadvantage:
– does not scale well in capacity
– for router dataset: expansion of 25—100

Multimatch Using Discriminators (MUD)

• Observation: after index j is matched, the
ACL has to be searched for all indices >j

• Basic idea:
– store a discriminator field with each row that

encodes the index of the row
– to search rows with index >j, the search key is

expanded to prefixes that correspond to >j

– multiple searches are then issued

MUD: Example

TCAM array

…

discriminator field

0000
0001
0010

rule0

rule1

rule2

Search key

011101xx00 xxxx

discriminator

match

MUD: Example

TCAM array

…

discriminator field

0000
0001
0010

rule0

rule1

rule2

Search key

011101xx00

discriminator

match

001x
01xx
1xxx

Metric
Entry

Invalidation
Geometric

Intersection-based
MUD

Multi-threading
support

Cycles for
k multi-matches

Overhead on
the packet
processor

No Yes Yes

7k k

None

Small state machine
logic; can be

implemented using a
few hundred gates
or a few microcode

instructions

1 + d + (d-1)(k-2)

Update cost O(NF) O(N)O(N)

NWorst-case TCAM
entries for N rules

NO(NF)

Small state machine
logic; can be

implemented using a
few hundred gates
or a few microcode

instructions

Extra bits 0 0
without DIRPE: d

with DIRPE: 1 + d(k-1)
r

with DIRPE:
log2(d/r) + (d-r) + (2r-1)

MUD: Summary

No per-search state in TCAM — suitable
for multi-threaded environments
Incremental updates fast
Scales well to large databases

Additional bits needed
Extra search cycles

Can still support Gbps speeds

Conclusion

• Range expansion problem: DIRPE, a database
independent range encoding
– scales to large number of ranges
– good incremental update properties

• Multimatch classification problem: MUD
– suitable for multithreaded environments
– scales to large databases

• No change to TCAM hardware and simple
� easy to deploy

