APPENDIX A
FPGA PROTOTYPE IMPLEMENTATION

For the requirement of high throughput from the big data,
BitMatcher can be accelerated by hardware. The calculation
on the two buckets in BitMatcher can be split into pipelines so
that the throughput is improved. The calculation for the insert
operation can be realized in parallel. What’s more, multiple
engine units can work for the different memory segments to
make BitMatcher scalable on hardware implementation.

addr

query_cnt

—» Processing Unit insert_ok

Processing Unit
SRAM-1 |

3
Waiting_FIFO |
Th_ PNIES
4J—P| Read |—->| Compute l—bl Write I_‘

update

%007

I
8

8 l’ickout ?-pl
unlpckl

Fig. 23: The FPGA architecture of BitMatcher.

SRAM-2
h1=Hip) 3% g
Write h->

hie Aip)

Read |—>

Compute

Based on these observations, we design a scalable and high-
throughput FPGA implementation for BitMatcher. As depicted
in Fig. 23] there are four inputs, i.e. cmd which indicates
whether the operation is insert or query, fp which is the
fingerprint, H(fp) which is the hash(item’s fingerprint) and
addr which is the hash(e) in §III.A. addr is split to two parts,
hl and gID. gID is in the highest address of addr, hl has the
same bit number as H(fp) and there are 257¢°(€D) processing
units. There are 9 steps for an operation as follows.

1) The operation is distributed to different processing units
based on their values of gID.

2) The operation gets through the Merge module to aggre-
gate the insert operations with the same A/ and fp. By
the module, the back-end computing unit increases the
counter of the corresponding entry not by 1 but a variable
insert_cnt which Merge module outputs. It can signif-
icantly decrease the number of commands to complete
and reduce the pressure on the back-end computing unit.

3) The merged operation reaches the Lock module. The
Lock module is used to avoid the conflict of the opera-
tions on the same entry. If there is an operation processing
and the new input has the same h1 value or h1 @ H(fp)
value, the input will be not allowed into the back-end
computation.

4) If there is no conflict detected in the Lock module, the
bucket value will be read from SRAM-1 which costs 1
clock cycle (@). If there is conflict, the operation will
be pushed into the Waiting_FIFO and try again from the

beginning (@).

5) After the bucket value is returned, the Compute module
calculates the new bucket value according to the inputs.
The computation takes three clock cycles.

6) If there is a new bucket value from (), the value will be
written into the SRAM-1 in the next clock cycle. What’s
more, the fp, H(fp) and insert_cnt will be replaced by the
stored kickout entry if kickout happens.

7) The operation that has finished, i.e. there is a match
and no kickout, is moved backward directly without
interaction with SRAM-2. On the other hand, for the
operation which has not finished after (), it will pass
through the processing of the next bucket. The bucket
address is calculated by the hI®H(fp’) where fp’ is the
fingerprint of the kickout entry or just H(fp) for no
kickout.

8) After the processing of two buckets, the operation, that
has finished, is output and instructs the Lock module to
unlock the corresponding addresses. The other operations
are pushed into the SRAM-1 again (@), and the case
happens only for the kickout from the second bucket to
the first.

9) The results from all Processing Units are into the final
serialized outputs with query_cnt indicating the query re-
sult and insert_ok indicating whether the insert operation
is successful. The insert operation can fail because only
one kickout is allowed in the whole process.

There are three highlights in the design. The first is scal-
ability. We divide two arrays into several segments and limit
the H(fp) to the same bit number as the address hl inside
one segment. In this way, hl and h2 have the same gID
value and the entry in one segment will never need to visit
another segment memory. As a result, the Processing Units
do not disturb each other and operate independently. Besides,
the Merge module aggregates the nearby operations, which
improves the throughput capacity too.

Second, the read/write conflict is solved by our Lock
module. Two entries, e; and es, are stored in the same
bucket Aj[hq(e1)] with hi(e1) = hi(e2); and we have two
adjacent operations, cmdy and cmda, to increase their counters
respectively. For ¢md;, the original value of the bucket with
v = {ey.cnt, ep.cnt} is read from memory and a new value
with v! = {e;.cnt’,es.cnt} is computed but has not been
written back. Without the lock design, it is v° instead of v!
to be read for cmds and the new value is {e;.cnt,es.cnt’},
instead of {ej.cnt’,es.cnt’}, to be final stored content. In
other words, the information about c¢md; is lost. However,
with the Lock module, cmds is delayed until cmd; finishes
so the correct result is stored finally. Besides, the kickout
function in BitMatcher can also bring read-write conflicts, e.g.
e1 kickout ey from bucket 2 to bucket 1 with ho(e1) = ha(eg)
while e; has read bucket 1 and has not read bucket 2, which
causes the system believe that there is no match for e; by
mistake. Because the maxloop is set as 1 for BitMatcher, the
kickout entry is either from &4 (e1) in bucket 1 or from hs(e;)
in bucket 2. Therefore, the Lock module can also avoid the
conflict by locking the address hq(e1) and ha(ey) respectively.
It can also be used to guarantee the sequence of the query and

TABLE II: FPGA resources for BitMatcher with 0.1MB
memory.

Name Slice LUT Slice Register BRAM Tile

Computation 3018 932 0
Merge 1886 917 0
Lock 1548 3088 0
BM (Total) 11639 7811 33

insert operations.

Third, the complex computation is implemented in the
Compute module within three clocks. It takes full advantage
of the parallelism in the calculation and improves the working
frequency by pipeline. The pipeline consists of three steps:

1) It parses the bucket by the Flag value to obtain all entries’
fingerprints and counters.

2) It compares the fingerprints with the input fp to judge
whether there is a matched entry. Meanwhile, all finger-
prints are compared with zero to locate the possible empty
entry.

3) It calculates the new bucket value for the insert operation
as described above and gets the query operation’s match
result (the entry counter or no match).

For the last cycle, there are three types of value adjustment
if the input fp matches one entry in the bucket: 1) increase
the corresponding counter if overflow does not happen; 2)
change the order of local entries so that all entries are stored
without overflow; 3) transition the state of the bucket as Fig.
8 in the original paper. For an insert operation, only one type
of adjustment occurs so that three alternative values can be
calculated ahead and in parallel, and one is selected according
to the condition. It is similar for a new fp without any match.

The FPGA resource consumption is as shown in Table
BitMatcher costs about 12K Slice LUTs and 8K Registers
for one processing unit with 0.1MB buckets. A typical Xilinx
Virtex-7 chip, xc7vx690tffgl157-2, has 433K Slice LUTs and
866K Registers, so the resource consumption takes less than
3% of the chip. The developers can adjust the number of pro-
cessing units and bound memory, based on the requirements.
The max frequency of BitMatcher on FPGA is 192MHz, which
means that the max throughput is 192M commands per second.

