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Cuckoo Counter: Adaptive Structure of Counters for
Accurate Frequency and Top-k Estimation

Qilong Shi, Yuchen Xu, Jiuhua Qi, Wenjun Li, Tong Yang, Yang Xu, and Yi Wang

Abstract—Frequency estimation and top-k flows identification
are fundamental problems in network traffic measurement.
Sketch, as a basic probabilistic data structure, has been exten-
sively investigated and used in different management applica-
tions. However, few of them is suitable for both estimating fre-
quency and finding top-k flows due to the unbalanced distribution
of real-world network streams. By introducing a pre-filtering
stage to isolate elephant and mice flows, the recently proposed
Augmented Sketch (ASketch) significantly improves accuracy
for both tasks. However, it suffers from serious performance
degradation because of frequent flow exchanges. In this paper,
we propose Cuckoo Counter (CC), an adaptive structure that
consists of several buckets organized in a specific way. The size
of the entry in each bucket is carefully designed to match the
actual distribution of streams. During processing, CC hashes a
flow to buckets and uses the idea of cuckoo hashing to relocate the
flow if an overflow or collision happens, which contributes to fully
utilizing memory. Therefore, the replacement strategy helps CC
precisely record elephant flows and cover more mice flows, and
also guarantees the throughput. Extensive experimental results
show that CC has the highest (Freq.) accuracy, excellent (Heavy
hitter / change) accuracy, highest (Top-k) precision, and competi-
tive throughput compared to the state-of-the-art. Specifically, CC
improves the throughput and accuracy by around 1 and 2 orders
of magnitude respectively compared to the well-known ASketch.
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I. INTRODUCTION

NETWORK measurements play a central role in com-
puter networks, such as network telemetry [2], [3],

anomaly detection [4]–[7], capacity planing [8], and caching
of forwarding table entries [9], [10]. A real network data
stream consists of a sequence of packets, each of which has
an ID (we usually use five-tuple as the ID of a network
flow: source IP address, destination IP address, source port
number, destination port number, and protocol type). We
use the term flow to represent packets with the same ID.
Normally, frequency estimation for each flow is considered
the most basic part of network measurements since various
applications are centered on it. Meanwhile, the high-frequent
flows are usually more relevant in these applications [11].
Many management applications can benefit from a function
that can find them efficiently, such as congestion control by
dynamically scheduling elephant flows [12], network capacity
planning [12], anomaly detection [13]. For instance, filtering
out the top-k flows contributes to identifying attackers in
DDoS defense [14]. Therefore, from another aspect, it is more
important to estimate the frequency of the most frequent flows
and find them out as accurately as possible. In this paper,
we mainly focus on the approximate algorithms used for
frequency estimation and top-k flows identification in a real
network data stream.

In those applications mentioned above, the network stream
is generated at a high rate [15], [16], long term and only
one-pass, thus the ordinary large-memory scheme is not af-
fordable or outweighs its benefits. Thus, many probabilistic
algorithms that store data temporarily in limited memory
are subsequently invented [16]–[20]. Sampling [21] is a
memory-saving scheme that was proposed very early, but its
effectiveness and error bound are hard to guarantee. Some
variants of Bloom filter [22], [23] can be used to estimate the
frequency of flow in a data stream, but they are not specialized
in it. In comparison, sketch and counter gain wide acceptance
due to their better performance guarantees [24]–[31].

Sketch-based structures usually provide an approximate
estimation of every flow. In the past, many well-known works
were invented (e.g., Count sketch [26], CM sketch [25], CU
sketch [24], Elastic sketch [32]), and they usually consist of
many reusable fixed-size counters and several hash functions,
making them support O(d) time insertion and query (d is the
number of hashes and usually less than 5). Unfortunately,
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the sketches mentioned above are not well adapted to the
real network stream, whose flows’ frequency are often highly
skewed [17]. In other words, the majority of flows are mice
(i.e., have a low frequency), while a few are elephant (i.e.,
have a high frequency). So they have to allocate enough bits
for each counter, thus wasting lots of memory in real scenarios.
The Pyramid sketch [33], which is proposed recently to spe-
cialize in frequency estimation, addresses the problem by using
a hierarchical data structure to dynamically accommodate
elephant flows and mice flows while achieving close to O(1)
time insertion and query on average. As described above,
the sketch’s fast update speed for all flows makes it very
suitable for frequency estimation. Unfortunately, they are not
so good at top-k estimation. The original sketch-based schemes
such as CM sketch may store different flows in the same
space, thus leading to misclassification between mice flows
and elephant flows; the Pyramid sketch, however, will access
memory several times when querying elephant flows, which
greatly slows down the speed.

Counter-based structures, on the other hand, record accu-
rate information of elephant flows (e.g., Space-Saving [34],
Lossy Counting [35], CSS [36], and HeavyKeeper [37]). They
usually consist of several fixed-size counters, each storing a
<key,value> pair. The key is the flow’s ID or fingerprint,
and the value is the flow’s frequency. Counter-based schemes
provide higher accuracy in elephant flow estimation because
their replacement policy prefers to preserve large flows in
the counters, and each counter has a flow’s ID or fingerprint
to avoid a elephant flow from being falsely identified as a
mice one. So they are quite suitable for top-k estimation. Un-
fortunately, these fixed-size counter-based schemes store few
information of mice flows, making them unfit for frequency
estimation.

Recently, some works combine the ideas of the above two
schemes to make them suitable for both frequency and top-k
estimation [15], [32], [38]. A well-known solution is ASketch
[15]. It uses an additional filter (with counters in it) on an
existing sketch to aggregate elephant flows early, and the
sketch processes the tail of the distribution. It utilizes the
skewness of the underlying network stream to improve the
accuracy of the most frequent flows by filtering them out
earlier, preventing them from misclassification. Unfortunately,
during insertion, it will cause many exchanges between the
sketch and the filter, which greatly slows down the speed.

From the above description, we can find that the current
difficulty mainly lies in guarantee speed, error, and (top-k)
precision at the same time, for both frequency estimation and
top-k estimation. In this paper, we propose a novel struc-
ture to address these problems, namely the Cuckoo Counter
(CC). It employs a similar data structure as the Cuckoo
hashing [39], consisting of m buckets organized in a specific
way and B entries with different sizes in each bucket (The
size of entryi increases as i increases). Each entry is a
<fingerprint,frequency>-like key-value pair. Each packet is
identified by its fingerprint. It makes O(1) access to each
bucket and linear traversal within a bucket, thus achieving
high throughput during update. It also utilizes the skewness
of the underlying network stream. When an overflow happens,

CC tries to relocate the flow to a larger-size entry in the same
bucket, which is still in one memory access, so as to guarantee
that elephant flows are placed in a large-size entry; mice flows
are placed in small-size entries. It also achieves high memory
utilization. When a collision happens, CC leverages the cuckoo
hashing [40] to kick out flows stored in the smallest entries
(i.e., the mice flows), and fills each bucket as much as possible
while separating elephant flows from mice flows as usual.
Through the above key ideas, CC can achieve high accuracy
for frequency estimation and high precision for finding top-k
flows.

To verify the effectiveness of our work, we conduct ex-
tensive experiments and compare CC with typical algorithms.
In terms of frequency estimation, CC achieves more than 1
order of magnitude lower error and advantageous throughput
compared to CM sketch [25], Pyramid sketch [33], Elastic
sketch [32], Nitro sketch [41], MV sketch [11], etc. In terms of
finding top-k flows, CC achieves nearly an order of magnitude
lower error and highest precision compared to Lossy Counting,
Space-Saving, HeavyKeeper, Elastic sketch, MV sketch, etc.
Especially, CC outperforms ASketch, which is also designed
to work on both two tasks, by around 2 orders of magnitude
on average. All related codes are open-sourced at our website
[42] and GitHub [43].

The rest of the paper is organized as follows. Section II
introduces the background and the related work addressed
on our two tasks. Section III presents the data structure and
algorithm of Cuckoo Counter. We conduct the mathemati-
cal analysis of Cuckoo Counter’s upper/lower error bounds,
space/time complexity and “error rate” in Section IV, and
show experimental results in Section V. Finally, Section VI
concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Problem Statement
We first formally define the network measurement task. A

network stream P = {p1, p2, ..., pN} contains N packets. Each
packet belongs to one and only one flow, denoted as e. Packets
in a network stream P can be classified into n non-overlapping
flows: E = {e1, e2, ..., en}. The number of packets in a flow ei
is called the frequency of ei (abbreviated as ei.f or fi), and so
we have

∑n
i=1 fi = N . A flow also has a unique ID to identify

itself, represented as ei.id (for example, we often use the 5-
tuple headers to identify a TCP flow in a network stream). All
packets of the same flow have the same ID (i.e., pi.id=pj .id if
pi, pj ∈ ek). CC mainly addresses two measurement tasks in
this paper. The first one is Per-Flow Frequency Estimation
[33]: Given a network stream P , it provides the (approximate)
frequency of each flow (i.e., f1, f2, ..., fn); The second one is
Top-k Estimation [37]: Given an integer k and a network
stream P , it provides a list of k flows from E with the largest
flow sizes (frequency), i.e., e1, e2, ..., ek. In the rest of this
section, we show the related solutions and the state-of-the-art
for these two tasks.

B. Frequency Estimation
As mentioned before, the most popular per-flow frequency

estimation method in network measurement is sketch, such as
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CM sketch [25], CU sketch [24], Pyramid sketch [33], Elastic
sketch [32], Nitro sketch [41] and MV sketch [11]. The most
widely used sketch is the CM sketch. The CM sketch consists
of d arrays, denoted by A1...Ad, where each array maintains
W counters. There are d hash functions, h1...hd. When
inserting a packet p belonging to flow e, the CM sketch adds
d mapped counters, i.e.Ai[hi(e)], (1 ≤ hi(e) ≤ w, 1 ≤ i ≤ d)
by 1. When querying a flow e′, it returns the minimum value
of the d mapped counters, i.e.,min(1≤i≤d)Ai[hi(e

′)]. Due to
hash collisions, the same counter may be shared by different
flows, which results in high error for mice flows. The CU
sketch’s process is similar to the CM sketch except that it only
increases the minimum counters of the d mapped counters by
1 when insertion.

One of state-of-the-art works, the Pyramid sketch [33], is a
layered data structure with λ layers. The number of counters
of layer i is half of that of layer i − 1. The first layer
is a normal sketch (like CM) with pure counters, and the
second layer and above are hybrid counters used for automatic
carry. With this structure, it not only prevents counters from
overflowing without the need of knowing the frequency of the
elephant flow in advance, but also achieves high accuracy and
high throughput at the same time. But whenever querying the
elephant flow, it will access multiple layers and thus decreases
the speed, making it difficult to perform top-k estimation.

C. Top-k Estimation

For top-k estimation, some algorithms that use sketches
mentioned above with other structures were proposed. These
solutions follow two basic strategies: count-all and admit-
all-count-some.

1) Count-All Strategy: This strategy uses sketches (such as
CM sketch [25] or CU sketch [24]) to record the sizes of every
flow, and uses a min-heap to keep track of the top-k flows,
including the flow IDs and their flow sizes. Take the CM sketch
as an example. For each arriving flow, we insert it into a CM
sketch, and then update the min-heap by its estimated value.
However, a mice flow may be misclassified as an elephant
flow as we said previously.

2) Admit-All-Count-Some Strategy: Quite a few algo-
rithms use the admit-all-count-some strategy, including Lossy
Counting (LC) [35], and Space-Saving (SS) [34], etc. Take
Space-Saving as an example. It only stores the information of
some flows in a data structure called Stream-Summary. When
a packet arrives, if its ID is not in the summary, the packet
will be admitted into the summary, replacing the smallest flow
whose size is nmin. The new flow’s initial size will be set
nmin + 1. The main problem is that the strategy drastically
over-estimates the sizes of flows since most flows are mice
flows.

The state-of-the-art, HeavyKeeper (HK) [37], uses a new
method called exponential-weakening decay and a small
hash table to store all elephant flows. When the incoming flow
is not found in the hashed bucket, HeavyKeeper decays the
flow size with a probability, which exponentially decreases as
the flow size stroed in the bucket increases. If the flow size
is decayed to 0, it will be replaced by a new flow. In this

Incoming Item e

Filter

Sketch 

CM, FCM, Count Sketch 

exchange of 

data items

Data stream

Fig. 1: The ASketch framework.

way, mice flows can easily be decayed to 0, while elephant
flows are more likely to keep stable in the bucket. But the
reported flow size might be under-estimated due to the decay
operations. Besides, its fixed-size buckets make it difficult to
adapt to the real network flow distribution. As a result, there
is still potential for improvement in accuracy and precision
when k and datasets are big.

D. For Both

In fact, all sketches used for frequency estimation can
simultaneously perform top-k estimation by adding a min-
heap, but the effect may not be good. In the experimental
part of Section V, we also compared the top-k estimation of
the three excellent sketches designed for frequency estimation:
Elastic sketch (EL) [32], Nitro sketch (NI) [41] and MV sketch
(MV) [11].

As we said before, some schemes have recently been
invented that focus on both tasks at the same time, including
Augmented Sketch (ASketch) [15], Cold Filter [38], etc. We
select the well-known ASketch as an example. The idea is
illustrated in Fig. 1. It adds an additional filter (with counters
in it) to an existing sketch Φ, to maintain the top-k flows within
this filter. When inserting a packet p belonging to flow e, it
scans each flow stored in the filter in order. If e has already
been in the filter, it just increments its corresponding counter.
Otherwise, it stores e with an initial count of one if there
is available space in the filter. If there is no available space,
it inserts this packet into the sketch Φ. During insertion, if
the frequency of e reported by Φ is larger than the minimum
value (associated with the flow e′) in the filter, the ASketch
needs to expel the flow e′ to Φ, and insert e into the filter.
Its key point is to use pre-filter to separate elephant flows
from mice flows, thus utilizing the skewness of the underlying
network stream to improve the accuracy for the most frequent
flows by filtering them out earlier, preventing them from
misclassification. However, its exchanges greatly slow down
the speed, which can also be found in the experimental results
in Section V. The structure of Cold Filter is similar to ASketch,
but with an opposite function — to captures mice flows.
What’s more, each packet enters one stage at most once, which
will not trigger exchanges and increases the speed compared
to ASketch. However, since Cold Filter is a meta-framework,
the limitations of those structures that combined with it still
remain.
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In a nutshell, although there are various solutions to address-
ing frequency estimation or top-k estimation, few methods can
address both while achieving high speed, high accuracy, and
high precision, due to their strategic or structural restrictions.

III. CUCKOO COUNTER FRAMEWORK

In this section, we describe the data structure and algorithm
of Cuckoo Counter. A data stream processing structure should
provide two fundamental interfaces: Insert() and Query() to
support each measurement task. For the frequency estimation
and top-k estimation of Cuckoo Counter, we will discuss them
separately.

A. Frequency Estimation

1) Data Structure:
As shown in Fig. 2, Cuckoo Counter consists of two arrays,

A1 and A2. We set the number of buckets to m, so each
array has w buckets, and each bucket consists of B entries
with different sizes: {entry1, entry2, ..., entryB} (the size
of entryi increases as i increases). An entry is the unit of
Cuckoo Counter, and a bucket is the unit of one access. As
a result, we want the length of a bucket to be an integer
multiple of a machine word (e.g., 64bits, 128bits...) and there
will be no waste of memory access. Each entry consists of two
parts, fingerprint and counter. We employ the fingerprint
as identification of the flow. All fingerprints must occupy the
same size space in order to comply with the idea of cuckoo
hashing. We assume the fingerprint takes up F bits memory
space, and the counter part occupies the remaining space. All
these entries can be used to estimate and store the mice flows.
But the elephant flows are only stored in entryB , entryB−1...
with larger size. Entries in the middle act as a buffer for
counting between mice flows and elephant flows. They can
deposit both mice and medium-size flows.

We introduce partial-key cuckoo hashing [40] to derive a
flow’s alternate location based on its fingerprint. For a packet p
belonging to flow e, the details of calculating the index of two
candidate buckets are as follows, h1(e) = hash(e), h2(e) =
h1(e) ⊕ hash(e′s fingerprint) (since the hash() function
is 64 bits long and much larger than m, we later use h̃i(e)
to refer to hi(e)%w, which is the number of the upper/lower
bucket that e is mapped to).

The ⊕ (XOR) in the formula guarantees that h1(e) can
also be computed from h2(e) and e′s fingerprint, which
means that h1(e) = h2(e) ⊕ hash(e′s fingerprint). Hence,
no matter which array the flow is now in, we can calculate the
location of the flow in the other array by its current position
and fingerprint:

hanother = hcurrent ⊕ hash(flow′sfingerprint)

2) Algorithm and Operations:
Insert: For brevity, we use Ai[j][k] to refer to

arrayi[bucketj ] [entryk]. Initially, all entries are set to 0.
When inserting a packet p belonging to flow e, we first
compute two indexes by hashing, h1(e) and h2(e) to find two
candidate buckets, A1[h̃1(e)] and A2[h̃2(e)]. Then we scan
all entries A1[h̃1(e)][j],A2[h̃2(e)][j], (1 ≤ j ≤ B) in these

Algorithm 1: Insert(e)
Input: a packet p belonging to flow e

1 fp = fingerprint(e) , maxloop ≥ 0;
2 h1(e) = hash(e) , h2(e) = h1(e)⊕ hash(fp);
3 we use Ai[j][k] to refer to arrayi[bucketj ][entryk];
4 entry.fp to refer to entry.fingerprint;
5 entry.cnt to refer to entry.counter;
6 i, i′ ∈ {1, 2} , i+ i′ = 3 , 1 ≤ j ≤ B;
7 if fp == Ai[h̃i(e)][j].fp then
8 Ai[h̃i(e)][j].cnt++;
9 if Ai[h̃i(e)][j] overflow then

10 Stay overflow(Ai[h̃i(e)][j]);
11 if failed then
12 Kick overflow(Ai[h̃i(e)][j]);

13 else if Ai[h̃i(e)] has an empty entry then
14 insert e into the entry;

15 else
16 random choose an Ai[h̃i(e)][1];
17 Kickout(maxloop , Ai[h̃i(e)][1]);
18 put {fp, 1} to Ai[h̃i(e)][1];

19 Function Stay_overflow(Ai[h̃][j]):
20 if has Ai[h̃][k].cnt , (k > j) is smaller then
21 swap(Ai[h̃][j] , Ai[h̃][k]);
22 return 1;

23 return 0;

24 Function Kickout(maxloop , Ai[h̃][j]):
25 rh = h⊕ hash(Ai[h̃][j].fp);
26 if Ai′ [r̃h][k] is an empty and capable entry then
27 put Ai[h̃][j] to Ai′ [r̃h][k];

28 else if maxloop - -> 0 then
29 choose a capable entry Ai′ [r̃h][k];
30 Kickout(maxloop , Ai′ [r̃h][k]);
31 put Ai[h̃][j] to Ai′ [r̃h][k];

32 else
33 choose a capable entry Ai′ [r̃h][k];
34 put Ai[h̃][j] to Ai′ [r̃h][k] (take smaller cnt);

35 Function Kick_overflow(Ai[h̃][j]):
36 rh = h⊕ hash(Ai[h̃][j].fp);
37 if Ai′ [r̃h][k] is an empty and capable entry then
38 put Ai[h̃][j] to Ai′ [r̃h][k];

39 else
40 choose a capable entry Ai′ [r̃h][k];
41 Kickout(maxloop , Ai′ [r̃h][k]);
42 put Ai[h̃][j] to Ai′ [r̃h][k];

43 set Ai[h̃][j] to 0;
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Fig. 2: The data structure of Cuckoo Counter.

two buckets. If flow e exists, we increment the counter of the
corresponding entry by 1. If flow e is a new flow, then we
check if there are empty entries in A1[h̃1(e)] or A2[h̃2(e)],
and if so, insert the packet into the empty entry found firstly
and set the value of the counter to 1. If the two buckets are full,
we randomly select a flow e′ in A1[h̃1(e)][1] or A2[h̃2(e)][1]
to kick out, and insert flow e into the kicked-out entry. Then
relocate the kicked flow e′ by the partial-key cuckoo hashing.
The flow e′ will be inserted into the corresponding bucket
of the other array. If that bucket is full too, the flow e′′ in
the entry1 of the bucket will be kicked out, and the flow
e′ will be inserted to replace e′′. This process will continue
until the original flow and the kicked-out flows are inserted
successfully, or the kicking out times reach maxloop. When
the kicking number is maxloop, the last kicked out flow will
be forced to be inserted into its corresponding bucket, then
replace the fingerprint of entry1 by its own fingerprint and
the smaller value of these two counters will be stored.

Here we briefly explain why we take the smaller value of
counters, since if we take the larger one, we can maintain the
good property of no under-estimation error: Because of the
overestimation caused by fingerprint collision, the underesti-
mation caused by min() operation can offset the error to some
extent. And the experimental result of average absolute error
(AAE) on CAIDA datasets in Table I verifies our statement
(the experimental result of average relative error (ARE) is
similar). The Algorithm of insertion is given in Algorithm 1.

AAE(Insert) CAIDA Real-life IMC
min() 0.49 0.14 4.04
max() 0.56 0.18 4.08

TABLE I: Comparison of AAE between min() and max().

We only select an entry1 of A1[h̃1(e)] or A2[h̃2(e)] ran-
domly to kick out or insert when the buckets of flow e mapped
are full. We make sure that entry1 always records the mice
flow in the network stream. When the counter of the entry
overflows, such as the value of the counter in entry1 reaches
its capacity, we scan other larger entries in the bucket. If
there is a larger entry, but its counter value is smaller than
the overflowed entry, then swap the two entries. Otherwise,
we check entries in the alternative bucket of the other array,
if there is an entry Φ with greater size and smaller counter
value than the overflowed entry. Then we kick out the original
flow in Φ and relocate it. Afterward, we insert the overflowed

flow into Φ. This will only introduce error of the frequency
of mice flow to other entries, without mistakenly adding
the frequency of elephant flow to that the mice flow, which
especially improves the accuracy of the frequency estimation
of elephant flows.

Query: When querying a flow e, we calculate two indexes
firstly, h1(e) and h2(e), by partial-key cuckoo hashing. Then
we match the fingerprint of e with these fingerprints in
Ai[h̃i(e)][j](i ∈ {1, 2}, 1 ≤ j ≤ B). If matched, we return
the the counter of the corresponding entry. Then if there is
at least 1 empty entry, we return 0. Otherwise, we just return
Ai[h̃i(e)][1].counter that is smaller.

Algorithm 2: Query(e)
Input: a flow e
Output: frequency of e

1 fp = fingerprint(e);
2 h1(e) = hash(e) , h2(e) = h1(e)⊕ hash(fp);
3 i ∈ {1, 2} , 1 ≤ j ≤ B;
4 if has Ai[h̃i(e)][j].fp == fp then
5 return Ai[h̃i(e)][j].cnt;

6 if has Ai[h̃i(e)][j] is empty then
7 return 0;

8 return min
i
(Ai[h̃i(e)][1].cnt);

Here we also briefly explain why we take the smaller
value of counters: 1). For flows that are in the datasets:
the experimental result of average absolute error (AAE) on
CAIDA datasets in Table II shows that taking the smaller
value is better (the experimental result of average relative error
(ARE) is similar). This is because for flows that are not stored
in the Cuckoo Counter, the flows have a high probability of
being low-frequency. 2). For flows that are out of datasets
(should return 0 when querying these flows): obviously it is
better to take the smaller value. The Algorithm of query is
given in Algorithm 2 1.

AAE(Query) CAIDA Real-life IMC
min() 0.49 0.14 4.04
max() 0.67 0.21 4.26

TABLE II: Comparison of AAE between min() and max().

Deletion: The deletion operation of Cuckoo Counter is
simple. We also compute two indexes of a flow e, h1(e) and
h2(e) , and scan entries in Ai[h̃i(e)][j](i ∈ {1, 2}, 1 ≤ j ≤
B). If the same fingerprint of flow e in these entries exists,
we decrease the corresponding counter by 1. Otherwise, we
decrease the bigger Ai[h̃i(e)][1].counter by 1. The reason is
the same as that in querying. If after deletion, the counter is
0, we also delete the corresponding invalid fingerprint.

1If we use the max() operation in both Insert() and Query(), it is easy to
prove the good property of no under-estimation error at this point. In contrast,
the AAE/ARE increases but is acceptable (still ahead of the Pyramid sketch),
which we do not elaborate on due to space constraints. It is up to the user to
choose whether they want to use the min() or max() operation.
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Fig. 3: An example of Cuckoo Counter using partial-key cuckoo hashing.

A running example: Fig. 3 shows an running example of
Cuckoo Counter. We only show the first three buckets of each
array and will set some parameters below. We assume B = 3,
maxloop = 2, entry1.cnt occupies 4bit (the maximum value
is 15), entry2.cnt occupies 8bit (the maximum value is 255),
and entry3.cnt is big that we assume it will not overflow. In
this example, given an entry with (ei, fre), ei is the flow’s
fingerprint (it is possible that two different flows have the
same fingerprint, but we ignore it for convenience), fre is
ei’s frequency. We will insert some packets belonging to some
specific flows next. 1). To insert e1: its two corresponding
buckets are A1[2] and A2[1]. We do not find it, but an empty
entry in the A2[1][3], so we fill (e1, 1) into this entry. 2). To
insert e2: its two corresponding buckets are A1[2] and A2[2].
We search for it in the two buckets and find that it already
exists in an entry A1[2][1], so we increase e2 by 1. But at this
time it is about to overflow, so we first look for a suitable entry
in the same bucket. We then find entry3 with (e6, 9) and just
swap them. 3). To insert e4: its two corresponding buckets are
A1[1] and A2[1]. We still search in the two buckets, but do
not find it, and there are no empty entries. So we randomly
select an entry1: A1[1][1] with (e3, 4) to kick out and replace
it with (e4, 1) forcibly. Unfortunately, e3 does not find an
empty entry in its alternate bucket (A2[2]). So we also select
the entry1: A2[2][1] with (e5, 11), kick out and replace it
with (e3, 4) forcibly. Finally, since maxloop = 2, e5 replace
entry1 of its alternate bucket: A1[3][1] and take the smaller
value. So we fill (e5, 11) into this entry. 4). To insert e8: its two
corresponding buckets are A1[3] and A2[3]. We still search in
the two buckets and found that it already exists in an entry:
A2[3][2], so we increase e8 by 1. But at this time it is about
to overflow, and the entry3 in e8’s two buckets is too big to
swap (with (e9, 400) and (e7, 350) in them), so we have to
kick out A1[3][3] with (e7, 350), and replace it with (e8, 255)
then empty A2[3][2].

B. Top-k Estimation

1) Data Structure:
The data structure of Cuckoo Counter is the same as shown

before, which consists of two arrays, and each array has w
buckets separated into multiple entries with different sizes. To
report the top-k most frequent flows, we add an extra heap.

This heap is different from the min-heap in the paper of CM-
sketch [25] or HeavyKeeper [37], it uses the fstart field to
record the frequency of a flow when it is first entered into
the heap. By adding this field, we can improve the algorithm
to filter out some false top-k flows. Experiments show that
this optimization improves the accuracy of top-k estimation
compared to ordinary min-heap (refer to Appendix A).

As shown in the left half of Fig. 4. The extra heap consists
of (1+ ε)k entries (where ε is a small number, such as 0.01),
each represented as heap[x] (1 ≤ x ≤ (1 + ε)k), where k is
the number of elephant flows to be tracked. Each entry consists
of three parts: flow ID, start frequency and current frequency,
represented as heap[x].ID, heap[x].fstart and heap[x].fnow,
respectively.

2) Algorithm and Operations:
Update: Initially, all entries of heap and Cuckoo Counter

are set to 0. When inserting a packet p belonging to flow e, we
first compute its fingerprint and insert it into Cuckoo Counter
by the partial-key cuckoo hashing as shown in Algorithm 1.
After insertion, we also get the frequency of e denoted by
f (Insert() and Query() are similar in that they can be done
together without affecting speed). Then we start to update the
heap. If e lies in heap, we update the corresponding fnow field
with f . Otherwise, if there exists an empty entry in the heap
or f is greater than the minimum fnow in the heap, we insert
or replace the flow of minimum entry with the information
of e (set ID to e, fstart and fnow to f ). The algorithm of
insertion is given in Algorithm 3.

Algorithm 3: Update of Top-k
Input: a packet p belonging to flow e

1 minheap = smallest heap[x].fnow , 1 ≤ x ≤ (1 + ε)k;
2 Insert(e); fcc = Query(e);
3 if e.id == heap[x].ID then
4 heap[x].fnow = fcc;

5 else if has heap[x] is empty or fcc > minheap then
6 heap[x].ID = e.id;
7 heap[x].fstart = fcc;
8 heap[x].fnow = fcc;
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Detection: The method for detecting the top-k elephant
flows is slightly different. We first compute the fingerprints
of all flows in the heap, and then re-traverse the heap. When a
flow e has a fingerprint collision and its (fnow − fstart) value
is less than a given threshold, we do not report it; otherwise,
we report it. The number of filtered flows cannot exceed εk.
If the number of filtered flows reaches εk during the traversal
process, then we report all subsequent flows. The algorithm
of detection is given in Algorithm 4.

Algorithm 4: Detection of Top-k
Output: an array //storing top-k flows

1 a multiset Φ; Xnum = 0; threshold = ∆;
2 for x = 1;x ≤ (1 + ε)k;x++ do
3 Φ.insert(fingerprint(heap[x].ID));

4 for x = 1;x ≤ (1 + ε)k;x++ do
5 if Φ.count(heap[x].ID) == 1 or

heap[x].fnow − heap[x].fstart ≥ ∆ or
Xnum ≥ εk then

6 array.push back(heap[x].ID);

7 else
8 Xnum ++;

9 if array.size() == k then
10 break;

11 return array;

Here we explain why this optimization works. Because our
CC stores flows with fingerprints, hash collisions may occur
between different flows. So the following situation is possible:
a mice flow e0 and a elephant flow e1 (assuming we are
looking for the top-1000 flows, e1 ranks 500) are mapped into
the same bucket, and they have the same fingerprint, so that
CC will misclassify e0 as a large flow. e0 will enter the heap
with both its fstart and fnow set to a large value (approximate
frequency of e1) and its fnow field will hardly grow. e1 will
also enter the heap later, so a false top-k flow such as e0 has
the following characteristics: its fingerprint collides with some
other flows in the heap, and its fnow − fstart value is very
small. We tested a variety of datasets and found that the false
top-k flows in the heap do fit this characteristic, while the true
top-k flows all have large fnow − fstart values. Therefore, we
pre-set a threshold ∆ to distinguish the difference between the
fnow−fstart values of true and false top-k flows. If a flow in
the heap has a fingerprint conflict and its fnow − fstart < ∆,
we just ignore it. Because some flows are filtered out, we set
the heap size to (1+ε)k to ensure that we end up with k flows.
In the best case, we can filter out εk false top-k flows, which
improves the top-k precision by εk. Such a change hardly adds
extra memory (since ε ≪ k ≪ number of buckets in CC).
The filter condition is shown in line 5 of Algorithm 4. For
detailed performance comparisons of top-k estimation before
and after optimization, please refer to Appendix A.
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Fig. 4: Cuckoo Counter with an optimized heap.

A running example: The update process is shown in the
left half of Fig. 4. 1). To insert e1 (blue arrow): We first get
its frequency f1 in CC, then we find e1 in the heap and set
its fnow field to f1. 2). To insert e2 (green arrow): We also
get its frequency f2 in CC, but we do not find it in the heap
and there is no vacancy. We find that f2 is greater than fn0

(the smallest fnow in the heap), so we replace e0 with e2, and
set both fstart and fnow fields to f2. The detection process is
shown in the right half of Fig. 4. Assuming that threshold =
∆ = 3, k = 1000, and ε = 0.01 (that means we want to
find top 1000 frequent flows, and the heap size is 1010). We
start traversing the heap: e1 has no fingerprint collision and
fnow − fstart = 2039− 159 = 1880 > ∆ = 3, so we report it
(denoted by “✓” in the red box on the right); e2 has fingerprint
collision, but it meet the threshold, so we report it. e500 has
no fingerprint collision, we report it even if it does not meet
the threshold. e800 has fingerprint collision, and it does not
meet the threshold (103− 102 < 3), so we ignore it (denoted
by “×”). Finally, 1000 flows were reported when we traverse
to e1003 (which means there are 1000 “✓”s in the red box on
the right), and the flows from e1004 to e1010 were left over.

IV. MATHEMATICAL ANALYSIS

In this section, we analyze the error bound for both fre-
quency and top-k estimation of Cuckoo Counter. We also
define “error rate”, the probability of identifying a non-
occurring flow as non-zero, and compare between CC to CM.

We first consider the case of only pure CC (without min-
heap). Suppose that CC records a network stream with N
packets and n flows. Let ei be the ith flow, whose actual
frequency is fi. We assume the average size of the entryk is
wk, the ratio of packets falling in entryk across all buckets is
λk, and use fp() to refer to the fingerprint() function. The
final frequency estimation of flow ei is

f̂i = fi −Xi + Yi (1)

where Xi is the decrement from k kicks (due to the min()
operation in the replacement strategy, there will only be under-
estimation) and Yi is the increment from fingerprint collision.
The two error bounds of Cuckoo Counter—the lower bound
and the upper bound—result from Xi and Yi respectively. We
will calculate them separately.
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A. Lower Bound Analysis of Pure CC

First, for E(Xi), we assume that there is no fingerprint
collision, which means Yi = 0 in this part. Since there are a
total of n flows, but only have 2w×B entries in the structure
to store flows, so there will be n−2wB kicks (each kick will
trigger one min() operation). We assume that Tkick represents
the average number of min() operations applied on each flow,
so we have:

Tkick =
n− 2wB

n
(2)

The theoretical lower error bound is:

Pr[fi − f̂i ≥ ϵN ] ≤ Tkick
ϵN

× (
fi
2

− Nλ1

4w
) (3)

Detailed proofs can be found in Appendix B. □

B. Upper Bound Analysis of Pure CC

Second, assuming that the length of fingerprint is F , we
have the theoretical upper error bound:

Pr[f̂i − fi ≥ ϵN ] < min(
1

wϵ2F
,
w1

ϵN
) (4)

Detailed proofs can be found in Appendix B. □

C. Upper Bound Analysis of CC & Min-heap

Next, we discuss the structure of CC & min-heap. Its
theoretical upper error bound is:

Pr[f̂i − fi ≥ ϵN ] ≤ 1

wϵ2F
(5)

Detailed proofs can be found in Appendix B. □
Hence the overall error bounds holds by the Eq. (3), (4),

and (5). □
From the above theoretical analysis, it can be seen that

the error of the algorithm is inversely proportional to the
fingerprint length, the number of entries in each bucket, and
the number of buckets.

Furthermore, assuming that the error probability is δ. If we
set the results of Eq. (4) and Eq. (5) as δ and ignore the
effect of mice flows from Eq. (4), we can obtain the following
time and space complexity in Table III (Notice that the r
and w in the first line are the depth and width of the sketch,
respectively).

Freq. r w Space Insert Query

CM [25] log 1
δ

2
ϵ O(1ϵ log

1
δ) O(log 1

δ) O(log 1
δ)

NI [41] log 1
δ O( 1

ϵ2p +

√
log 1

δ

ϵ2p1.5
√
m
) O(

log 1
δ

ϵ2p +
log1.5 1

δ

ϵ2p1.5
√
m
) O(p log 1

δ) O(log 1
δ)

MV [11] log 1
δ

2
ϵ O(1ϵ log

1
δ log n) O(log 1

δ) O(log 1
δ)

CC 2 1
δϵ2F O( 1

δϵ2F ) O(1) O(1)

Top-k — — Space Update Detection

SS [34] — — min(n,O(K2 log n)) O(1) O(K)

LC [35] — — 1
ϵ log(ϵN) +K log n O(1) O(K)

HK [37] — — O( γ
ϵδ(b−1)) +K log n O(1) O(K)

CC — — O( 1
δϵ2F ) +K log n O(1) O(K)

TABLE III: Comparison of Cuckoo Counter with STOA.
Since many of the algorithms CC compared do not have

corresponding mathematical analysis given in their original

paper, we only select some of them to make a table as
above. Note that some algorithms in the above table have
self-contained parameters, so please go to the corresponding
original paper if necessary.

D. Error Rate Comparison Between Pure CC and CM

We define “error rate” as the probability of identifying a
non-occurring flow as non-zero after inserting all network
stream. We return 0 in line 7 of Algorithm 2 when we do
not find the corresponding fingerprint and there is an empty
entry in two buckets. And we return the minimum value of two
entry1 if there is no empty entry. This raises the question: will
we identify more non-occurring flows as non-zero compared
to CM sketch?

Suppose d and wcm are the depth and width of CM sketch
respectively, wcc is the width of Cuckoo Counter, n represents
the type of flow in the network stream Number, M stands for
memory usage (unit is MB).

1) For CM Sketch: We define Pcm as the error rate of CM,
we have: {

Pcm = (1− (1− 1
wcm

)n)d

d× wcm × 2 = M × 1024× 1024
(6)

Note that in the paper we take the counter size of CM sketch
as 16 bits (2 bytes). Detailed proofs can be found in Appendix
B. □

2) For Cuckoo Counter: We also define Pcc as the error
rate of CC, we have:{

Pcc < 1− (1− 1
(2wcc)

)n
∑3

i=0
ni

i!(2wcc)i

2× wcc × 8 = M × 1024× 1024
(7)

Note that in the paper we take the bucket size of Cuckoo
Counter as 64 bits (8 bytes), and each bucket has 4 entries.
Detailed proofs can be found in Appendix B. □

3) Experimental Results: Below we can draw the images
of Pcm and Pcc’s upper bound next, we take d = 4, n =
0.1million = 100000, and the range of M is 0.1∼2MB.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
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1.0
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memory (MB)

 Pcm   Pcc (UB) 

 CM   CC

Fig. 5: CM and CC’s error rate upper bound vs. memory.

We can find that: (1). The theoretical upper bound of Pcc is
much lower than the theoretical results of Pcm, and we have
also selected different n (e.g. 1 million) to plot, and the results
are similar to the above Fig. 5. The real Pcm is very close to
the theoretical value. (3).The real Pcc is slightly lower than
the theoretical upper bound.
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V. PERFORMANCE EVALUATION

In this section, we conduct a series of experiments. We
first introduce the setup and metrics, then respectively show
the experimental process of frequency estimation and top-k
estimation. Finally, we analyze the experimental results. To
guarantee that our experiments are conducted head-to-head,
the source code of the various algorithms we use is either
common to the field or open-sourced by their authors, and
we have released the related source codes and datasets at our
website [42] and GitHub [43].

A. Experiment Setup

1) Test Platform:
We performed all experiments on a machine with Intel

i7-9700CPU@3.0GHz and 16G DRAM. The OS is Ubuntu
20.04. To reduce the CPU jitter error, we take the average
results by running 10 times for each evaluation circularly.

2) Datasets:
i. CAIDA Datasets: We use the CAIDA trace which

collected in Equinix-Chicago monitor from CAIDA [44]. Our
experimental CAIDA datasets are the same as that used in
[32]. We use a trace with monitoring time of 5 seconds, which
contains 165K flows, 2.49M packets. The maximum flow size
is 17k. In order to evaluate the performance of our algorithms
in large-scale measurement, for experiments on accuracy and
throughput, we further use a trace with monitoring time of 2
minutes, which contains 1.71M flows, 53.72M packets. The
maximum flow size is 0.93M.

ii. Real-Life Transactional Datasets: We download the
RealLife Transactional dataset called WebDocs from website
[45]. This dataset is built from a spidered collection of web
html documents. More details about the dataset are in [46].
Since the dataset is too large, we cut it into sub-datasets each
with a size of 102MB. The frequency of each packet ranges
from 1 to 5349.

iii. IMC DC Trace: IMC Data Center Trace [47] is
collected from the data centers studied in [48]. The character
of data center traffic is that it contains a large number of flows,
while simultaneously contains a few extremely large flows.
The trace we use contains 1.77M flows, 7.59M packets. The
maximum flow size is 3.35M.

iv. Synthetic Datasets: We generate a series of synthetic
traces that follow the Zipf [49] distribution using Web Poly-
graph [50]. The skewness of the traces ranges from 0.0 to 1.0.
Each trace contains approximately 1.0M flows, 32.0M packets.
The maximum flow sizes range from 62 to 2.22M.

3) Algorithm and Operations:
i. Frequency Estimation: We implement our Cuckoo

Counter in C++, and compare our results with those of CM
sketch (CM) [25], CU sketch (CU) [24], Augmented sketch
(AS) [15], Pyramid sketch [33], Elastic sketch (EL) [32],
Nitro sketch (NI) [41] and MV sketch (MV) [11]. Because
the Pyramid framework can apply to different sketches: the
CM, CU, and AS, and the Pyramid CU sketch (PCU) has the
highest accuracy [33]. Therefore, we use PCU sketch as the
representative of Pyramid sketch in our experiments. For CM,

CU, AS and PCU, we used the open source C++ code in [33];
For EL, NI and MV, we implemented ourselves.

Notice that we also perform experiments on heavy hitter
detection and heavy change detection in this part, because their
accuracy is highly determined by the accuracy of frequency
estimation. The definitions of heavy hitter and heavy change
are as follows.

Heavy Hitter (HH) Detection: reporting flows whose sizes
are larger than a predefined threshold.

Heavy Change (HC) Detection: reporting flows whose
sizes in two adjacent time windows increase or decrease
beyond a predefined threshold.

For the Synthetic dataset, we fixed the memory size to
500KB. The size of CM, CU and AS entries are 16 bits. CM
and CU allocate 4 arrays and use 4 32-bit Bob hash [51]
functions to flows mapping. The AS consists of the widely
used CM sketch and a filter. The filter will allocate about
0.4KB additional memory, and the CM sketch of AS also
includes 4 arrays and 4 32-bit Bob hash functions. All entries
of the PCU are 4 bits, and the number of mapped entries is 4.
The PCU use one 64-bit Bob hash function. EL’s heavy part
contains 8 entries in each bucket, and the depth of the CM
sketch in the light part is 1. The depth of the count sketch
of NI is 4, and the geometric sampling rate is p = 0.01
(recommended value). The depth of MV is 4.

Our Cuckoo Counter has three kinds of entries and two
arrays. We fixed each bucket to 64-bit size in order to fit the
scale of data streams and achieve one memory access for each
bucket operation. The size of each bucket can be also adjusted
to match different data streams. In each 64-bit bucket, four
entries are distributed with 12 bits, 12 bits, 16 bits and 24
bits, respectively. In each entry, the fingerprint is 8 bits and
the rest memory spaces are allocated to the counter, as shown
in Fig. 6. We also use the 64-bit Bob hash to find two candidate
buckets.

entry 4 (24 bits) entry 3 (16 bits) entry 2 (12 bits) entry 1 (12 bits)

fingerprint
8 bits

counter
16 bits

fingerprint
8 bits

counter
8 bits

fingerprint
8 bits

counter
4 bits

fingerprint
8 bits

counter
4 bits

Fig. 6: The specific structure of entries in each 64-bit bucket.
ii. Top-k estimation: For finding top-k flows, we compare

our results with Lossy Counting (LC) [35], Space-Saving
(SS) [34], Augmented Sketch (AS) [15], HeavyKeeper (HK)
[37],Elastic sketch (EL) [32], Nitro sketch (NI) [41] and MV
sketch (MV) [11]. HeavyKeeper performs best among all the
related algorithms. For LC, SS, AS, EL, NI and MV, we
implemented the code ourselves; for HK, we used the open-
sourced C++ code.

The memory size and k are set manually. The memory size
determines the number of buckets in each data structure, and
k indicates top-k flows to query, each algorithm reporting the
largest k flows estimated. We fix k = 1000.

For the Synthetic dataset, we fixed the memory size to
500KB. For HK, EL, NI and MV, the number of buckets in
Stream-Summary is k, and the rest memory size is distributed
to their main structures. For AS, of which the CM sketch
includes 2 arrays. For CC, the number of buckets in Stream-
Summary is k, and the rest memory size is used by CC
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Fig. 7: Frequency Parameter Tuning.

consisting of 2 arrays. Each bucket also has four entries with
4bits, 4bits, 8 bits, and 16bits, and fingerprints also 8 bits.

B. Metrics

We consider the following metrics.
Throughput: Throughput is used to measure the processing

speed of the insertion and query, and is estimated by the
running time of the algorithm. It is estimated by the formula
N/T , where N is the number of flows, T is the running
time. We use millions insertions per second (Mps) to represent
throughput. All the experiments are repeated 10 times to
minimize accidental deviations.

AAE: AAE is defined as 1
|Ψ|

∑
(ei∈Ψ) |fi− f̃i|, where fi is

the real frequency of flow ei, f̃i is the estimated frequency,
and the Ψ is the query set (for frequency estimation, it is
all flows; for top-k estimation, it is top-k flows). For the all-
flows’ query set, the authors of the ASketch [15] use a sampled
set of the whole multi-set, mainly focusing on querying the
elephant flows. Without knowing the details of the sampling
method used by the ASketch paper [15], we focus on the whole
dataset by querying each distinct flow only once. That is why
the ASketch is only a little better than the CM sketch in terms
of accuracy in the following experiments.

ARE: ARE is defined as 1
|Ψ|

∑
(ei∈Ψ) |fi − f̃i|/fi. These

parameters in the formula have the same meaning as in AAE.
We explain the reason why AAE and ARE are sometimes
larger than anticipated in the experiments. When a sketch
uses compact memory (e.g., 100 KB) to process massive
data stream (e.g., 10M packets), significant over-estimations
of mice flows will become common [33]. Take the real IP
traces for example. About 41.8% flows in these data stream
only have one packet, while large flows have more than 10,000
packets. When a flow with one packet is estimated as 101, the
AAE and ARE will be both 100. This will make AAE and
ARE much larger than anticipated.

Precision (HH/HC): Fraction of true heavy flows reported
over all reported flows.

Recall (HH/HC): Fraction of true heavy flows reported over
all true heavy flows.

F1-score (HH/HC): 2×precision×recall
precision+recall .

Precision (Top-k): Fraction of true top-k flows reported
over all the reported k flows.

C. The Effect of Maxloop

CC has an important parameter: maxloop, which deter-
mines the maximum number of kickouts for CC. We tune
maxloop and see how insert/query throughput, error and
precision change to determine the maxloop for subsequent
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Fig. 8: Top-k Parameter Tuning

experiments. We fix the memory to 100KB and conduct
experiments on various datasets. The tuning results are shown
in Fig. 7 and Fig. 8.

Frequency estimation: We can find that for insert through-
put, it decreases linearly with the increase of maxloop. The
reason is that with the arrival of packets, the bucket of CC is
gradually filled, which causes more and more kickouts and
slows down the speed. For query throughput, it increases
slightly as maxloop increases. This is because a higher
maxloop makes the CC fully filled, thereby increasing the hit
rate of the Query() operation. For errors (AAE and ARE), there
is a slight drop in maxloop from 0 to 1. When the maxloop is
continuously increased, there is no obvious effect. The reason
is that, with the arrival of packets, each bucket of CC is full,
and the number of kickouts of the Insert() operation will reach
the upper limit of maxloop, thus introducing an error in the
kickout replacement strategy (Line 34 of Algorithm 1). As
maxloop continues to increase from 1, the advantage of fully
utilizing the space offsets the error introduced by kickout.
Since the errors are similar when maxloop ≥ 1, we take
maxloop = 1 in the frequency estimation experiments.

Top-k estimation: Here we only conduct experiments on
two Synthetic datasets (the results of the remaining datasets
are similar to Synthetic(1.0)). Note that we did not record
the query throughput here, because when k is not very large,
the time to query the top-k flows can generally be ignored.
For insert throughput, it also drops significantly as maxloop
increases. But the rest of the metrics are not the same in
the two datasets: in the Synthetic(0.0) dataset (Fig. 8(a)), the
error and precision slightly improve when maxloop changes
from 0 to 1, and then remain unchanged; in the Synthetic(1.0)
dataset (Fig. 8(b)), the precision remains the same, but the
error increases instead. The reason is that the elephant flow
may be affected by the flow kicked from elsewhere in the
process of moving from the small entry in the bucket to the
large entry. This effect is limited, and it will not identify an
elephant flow as a mice flow (corresponding to no change in



11

0.0 0.2 0.4 0.6 0.8 1.0
0

4

8

12

16

20

24
In

s
e
rt

 T
h

ro
u

g
h

p
u

t 
(M

p
s
)

Memory (MB)

 CM  AS  CU  PCU  

 CC  EL  NI  MV

(a) CAIDA

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

In
s
e
rt

 T
h

ro
u

g
h

p
u

t 
(M

p
s
)

Memory (MB)

 CM  AS  CU  PCU  

 CC  EL  NI  MV

(b) Real-Life

0.0 0.2 0.4 0.6 0.8 1.0
0

4

8

12

16

20

24

28

In
s
e
rt

 T
h

ro
u

g
h

p
u

t 
(M

p
s
)

Memory (MB)

 CM  AS  CU  PCU  

 CC  EL  NI  MV

(c) IMC

0.0 0.2 0.4 0.6 0.8 1.0
0

4

8

12

16

20

24

28

In
s
e
rt

 T
h

ro
u

g
h

p
u

t 
(M

p
s
)

Skewness

 CM  AS  CU  PCU  

 CC  EL  NI  MV

(d) Synthetic

Fig. 9: Insert throughput vs. memory and skewness.
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Fig. 10: Query throughput vs. memory and skewness.
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Fig. 11: AAE vs. memory and skewness.
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Fig. 12: ARE vs. memory and skewness.

precision), but it will slightly increase the error. Since most
datasets and data in real networks are highly skewed, we take
the “Ostrich Policy” of maxloop = 0 in the top-k estimation.

D. Experiments on Per-flow Frequency Estimation

In this part, we illustrate the performance of our Cuckoo
Counter by insert throughput, query throughput, AAE, ARE,
HH accuracy, HC accuracy, Large-scale measurement accu-
racy. We use CC as an abbreviation of Cuckoo Counter, while
CM, AS, CU, PCU, EL, NI, MV are used as the abbreviations
of the CM sketch, Augmented sketch, CU sketch, PCU sketch,
Elastic sketch, Nitro sketch and MV sketch respectively in the
figures.

Insert Throughput: Fig. 9(a) shows the insert throughput
vs. memory of various sketches on CAIDA dataset. Note that
due to the sampling rate p = 0.01, the insert throughput of NI

is very high (> 100Mps), which is achieved at the loss of a
certain accuracy (see Fig. 11 and Fig. 12), so we just ignore
the insert throughput analysis of NI in this subsection.

Among them, PCU, CC, EL achieve the highest speed,
because they only need to calculate a very few hash functions,
while the rest of the sketches such as CM, AS, CU, MV need
to calculate the hash function 4 times (the same depth as their
sketches). Note that PCU (and other sketches as well) sees a
slight throughput drop as the memory size increases, since it
cannot be entirely put in the cache and the memory access
latency increases.

Fig. 9(b) and 9(c) are almost the same as Fig. 9(a). It
is worth noting that Fig. 9(d) shows that PCU has higher
throughput at lower skewness and lower throughput at higher
skewness, while CC and EL are the opposite. This is because
the PCU is a pyramid structure, and a small amount of
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Fig. 13: Heavy hitter detection.
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Fig. 14: Heavy change detection vs. memory

elephant flows will make it frequently carry to the upper layer,
which will increase the number of memory access and slow
down the speed. However, since CC and EL record the flow’s
ID/fingerprint, the appearance of elephant flows will increase
the number of memory hits. Thereby speeding up the insert
throughput.

Query Throughput: Fig. 10(a), 10(b) and 10(c) shows the
query throughput vs. memory of various sketches on different
datasets. We can find that CC is only slightly slower than EL,
and is faster than PCU and other sketches (especially when the
memory is 100KB, the throughput rate of CC is 1.33-1.61x
that of PCU at this time, because PCU needs to frequently
access the upper layer, which increases the number of memory
accesses).

Fig. 10(d) shows that under various skewness, the query
throughput of CC is more than 2.00x that of sketches except
EL, and it is close to EL.

AAE: Fig. 11 shows the AAE vs. memory/skewness of
various sketches on different datasets. It can be observed that
under all memory and skewness, CC’s AAE is at least 10x
ahead of the rest of the sketches. Especially on the real-life
dataset, CC leads by more than 100x. In addition, it can be
seen from Fig. 11(a), 11(c) and 11(d) that NI’s AAE is not
competitive when the memory is large or the skewness is
large, which also confirms what we mentioned above: the high
insert throughput of NI is caused by a low sampling rate and
accuracy sacrifice.

ARE: Fig. 12 shows the ARE vs. memory/skewness of
various sketches on different datasets. The graph of ARE is
very similar to that of AAE. Compared with PCU (which has
the best performance in the rest of the sketches), the ARE of
CC is reduced by 4.92-105.31x. Both the AAE and ARE of
CC outperforming other algorithms benefits from its cuckoo
strategy (storing more flows with best effort) and adaptive
design (making best use of limited memory).

Heavy Hitter Detection: Fig. 13 compares the accuracy
vs. memory of CC with that of other sketches in heavy hitter

detection. We use one CAIDA dataset and set the HH threshold
to 0.002% of the total number of packets in dataset. NI has
the lowest accuracy due to its sampling-based algorithm. The
advantage of CC is that it maintains a high F1 score and
precision when the memory is less than 200KB. We can also
find that most sketches maintain almost 100% recall. This is
due to their nature of overestimating frequency and increasing
the false positive rate, which affects precision but not recall.
Note that CU and MV have the smallest ARE, while CC and
EL are close behind. The reason is that CC’s kickout and
replacement strategy may introduce errors when a heavy hitter
is transferred from a small entry to a large entry in a bucket.
We regard this as a design trade-off. In general, CC has the
highest F1 score, precision, recall and competitive ARE.

Heavy Change Detection: Fig. 14 compares the accuracy
vs. memory of CC with that of other sketches in heavy change
detection. We use one CAIDA dataset and divide it into 10
epochs and look at the accuracy within the first epoch. We set
the HC threshold as 0.001% of the total number of packets
in dataset. Again, NI has the lowest accuracy due to sample
rate. At this time, CC has the highest F1 score, precision
and recall under all sizes of memory, especially when the
memory ≤200KB. CU has the lowest ARE, followed by CC
and CM.

Fig. 15 compares the accuracy vs. epoch of CC with that of
other sketches in heavy change detection. We use two CAIDA
datasets and divide it into 20 epochs and see how the accuracy
changes with epoch. We again set the HC threshold as 0.001%
of the total number of packets in datasets. We set the memory
to 500KB. Again, NI has the lowest accuracy. Here, the degree
of fluctuation of each line reflects the stability of each sketch
for heavy change detection. As the epoch increases, CC has
nearly 100% F1 score, precision and the lowest ARE, while
CU has the highest recall. We find that the recall of the
PCU decrease significantly with the increase of epoch, which
also reflects the low stability of the PCU for heavy change
detection. Note that the ARE curves (Fig. 15(d)) of each sketch
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Fig. 15: Heavy change detection vs. epoch
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Fig. 16: Large-Scale Measurement

are on the rise, which is also very understandable: As more and
more packets are inserted, the hash collision between different
flows will increase, so the estimation error of the sketch must
be larger and larger.

Large-Scale Measurement: We further use a CAIDA trace
with monitoring time of 2 minutes to evaluate the performance
of CC in large-scale measurement. We vary the memory from
1MB to 5MB. Since the throughput results are similar across
memories, we take the results only once. As shown in Fig.
16, CC’s insert throughput is only worse than NI (due to the
sampling rate) and query throughput is only slightly worse
than EL for large datasets. As before, CC achieves a substantial
lead in AAE and ARE.

E. Experiments on Top-k Estimation

In this part, we illustrate the performance of our Cuckoo
Counter applied to finding top-k flows. The main metrics
are insert throughput, top-k precision, AAE and ARE. We
compare our Cuckoo Counter (CC) with related Lossy Count-
ing (LC), Space-Saving (SS), Augmented sketch (AS), Heavy
Keeper (HK), MV sketch (MV), Nitro sketch (NI) and Elastic
sketch (EL).

Throughput: Fig. 17 shows the insert throughput vs. mem-
ory/skewness of various sketches on different datasets. We find
that in the Real-Life dataset (Fig. 17(b)), CC far outperforms
all other data structures in throughput. Especially when the
memory is small (such as 100KB), CC’s throughput is 1.69x
that of HK. In the CAIDA and IMC datasets (Fig. 17(a) and
Fig. 17(c)), the throughput of CC is almost the same as that of
LC and SS (all three are the highest), and it steadily exceeds
HK. In synthetic dataset (Fig. 17(d)), the advantage of CC is
also large, especially when the skewness is small (i.e., <0.5).

Precision: Fig. 18 shows the top-k precision vs. mem-
ory/skewness of various sketches on different datasets. We
can find that CC maintains the highest accuracy in almost
all memory (Fig. 18(a), 18(b) and 18(c)). And the minimum
required memory for CC to reach 95% precision is the least

(100KB for the CAIDA dataset, 300KB for the Real-Life
dataset, and 100KB for the IMC dataset). Especially when
the memory is small (≤100KB), the precision of CC can reach
more than 99% (Fig. 18(a)) and 98% (Fig. 18(c)), and is 2.44-
5.61x that of HK. Similarly, CC maintains the highest accuracy
under all skewness, and is the first to achieve 95% precision
at 0.5 skewness.

Next we explain why each algorithm performs poorly when
skewness is low. Take the Synthetic dataset (skewness=0.0) we
use as an example: at this time, the data distribution is very
flat, the frequency of flows ranked 646∼1099 is 51, and the
frequency of flows ranked 1100∼1807 is 50. Since the current
top-k algorithms are probabilistic algorithms, it is very difficult
for us to distinguish the two flows whose frequencies differ by
1, which leads to one of the following three reasons (depending
on the characteristics of each algorithm): (1). There are many
flows with frequency=51 are underestimated. (2). There are
many flows with frequency=50 are overestimated. (3). Both
of the above. This leads to huge precision errors. Datasets
with high skewness will not have this problem: the frequency
of flows ranked 1∼1000 is different, and it is only necessary
to ensure that the relative order of frequencies is correct.

AAE: Fig. 19 shows the top-k AAE vs. memory/skewness
of various sketches on different datasets. We find that in the
Real-Life dataset, the AAE of CC is overall better than all
other sketches, especially 11.60-97.18x better than HK. In the
CAIDA and IMC datasets, it is also better than all sketches
except EL, and only worse than EL when the memory is
slightly larger (Fig. 19(a) and 19(c)). This is because the
bucket of EL’s heavy part stores the complete flow ID. When
the memory is large, it can completely save the top-k flows’
information, so it is only accurate when the memory is large.
As can be seen from Fig. 19(d), under different skewness, CC
maintains a huge lead over HK and other sketches, except
that it is worse than EL when the skewness is slightly larger.
When the skewness increases, the elephant flow effect of
the data stream becomes more significant (reflected in the
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Fig. 17: Throughput vs. memory and skewness.
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Fig. 18: Precision vs. memory and skewness.
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Fig. 19: AAE vs. memory and skewness.

0.0 0.2 0.4 0.6 0.8 1.0
1E-5
1E-4

0.001
0.01

0.1
1

10
100

A
R
E

Memory (MB)

 CC  HK  LC  SS
 AS  MV  NI  EL

(a) CAIDA

0.0 0.2 0.4 0.6 0.8 1.0

0.001

0.01

0.1

1

10

100

A
R
E

Memory (MB)

 CC  HK  LC  SS
 AS  MV  NI  EL

(b) Real-Life

0.0 0.2 0.4 0.6 0.8 1.0

1E-4
0.001

0.01
0.1

1
10

100

A
R
E

Memory (MB)

 CC  HK  LC  SS
 AS  MV  NI  EL

(c) IMC

0.0 0.2 0.4 0.6 0.8 1.0

0.001

0.01

0.1

1

10

100

A
R
E

Skewness

 CC  HK  LC  SS
 AS  MV  NI  EL

(d) Synthetic

Fig. 20: ARE vs. memory and skewness.

increase in the number of elephant flows). At this time, the
adaptive structure of CC plays a role, making the elephant
flow automatically adjust to the larger entry in the bucket.

ARE: Fig. 20 shows the top-k ARE vs. memory / skewness
of various sketches on different datasets. The experimental
results of ARE are similar to those of AAE. On the Real-Life
dataset, CC leads HK and other sketches by more than 0.5
orders of magnitude. It also beats other HK and other sketches
on the remaining datasets, and is only worse than EL when
the memory or skewness is slightly larger.

F. Integration into Redis

In order to systematically verify the effectiveness of CC
on the software platform, we integrated and tested CC on
top of Redis [52], which is often used as a distributed,
in-memory storage system. We measure throughput under
different memory. To complete this experiment, we rewrite

CC in RedisBloom [53] (a module provides that probabilistic
data structures for Redis) and add it to the Redis configuration
file. The test platform is the same as the previous experiment,
and the Redis version number is 6.2.6. We use the CAIDA
dataset, with 2.48M packets and 0.17M streams, and vary the
memory from 0.1 to 1.

As shown in Fig. 21(a), we regard an insertion or query
equally as an event, and Transactions Per Second (TPS) and
Queries Per Second (QPS) can be regarded as the insert/query
throughput before. We find that the TPS and QPS of CC are
nearly 2 times higher than those of CM. The results of AAE
and ARE are almost the same as the previous CPU simulation,
so they are omitted.
G. Integration into BESS

In order to verify the effectiveness of CC on the network
platform, we integrated and tested CC on top of BESS [54],
which is a programmable platform for vSwitch dataplane. We
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Fig. 21: Speed on software platforms.
measure packet rate and throughput under different memory.
To complete this experiment, we implement the sketching
module of Cuckoo Counter as a plugin in the data plane
processing pipeline. We use the gen packet() function in
BESS to randomly generate packets of size=64B.

As shown in Fig. 21(b), we measured packet rate (Mpps)
and throughput (Gbps). For 64B packets, 10Gbps throughput
is equivalent to 14.88Mpps, and 20Gbps equals to 29.76Mpps.
We can find that the insert and query speed of CC are about
1.6-1.8x that of CM. We also omit the error.

VI. CONCLUSION

Frequency estimation and top-k flows identification are two
fundamental problems in network traffic measurement. To
work well on both tasks, we propose Cuckoo Counter (CC),
an adaptive structure that consists of several buckets organized
in a specific way. In summary, CC employs three key ideas
to achieve our design goals: 1) Memory efficient: The size
of the entry in each bucket is carefully designed to count
the frequencies of mice flows and elephant flows respectively,
which can handle skewed data streams efficiently and improve
the memory utilization; 2) High speed: When an overflow
happens, CC tries to relocate the flow to a larger-size entry in
the same bucket within O(1) memory access, so that elephant
flows and mice flows can be relocated into suitable entries
without sacrificing update performance; 3) High accuracy and
high precision: When serious conflicts happens, CC leverages
the partial-key cuckoo hashing to kick out flows stored in
the smallest entries, fills each bucket as much as possible to
improve memory utilization without losing too much accuracy,
and naturally preserves more elephant flows. Experimental
results show that the CC can outperform the state-of-the-art
and achieve very high accuracy with fairly limited memory
usage in frequency estimation and finding top-k flows.
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SUPPLEMENTARY MATERIALS

APPENDIX A
TOP-K OPTIMIZATION COMPARISON

We show the comparison of algorithm performance before
and after optimization. ∆ = 3, ε = 0.01, k = 1000 are used
in the experiment, and other parameters and datasets are the
same as those in Section 5 of the original paper.
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Fig. 22: Throughput vs. memory and skewness.

Throughput: Fig. 22 shows the top-k Throughput vs mem-
ory/skewness before and after optimization of the algorithm.
We can find that our optimization has little effect on through-
put. We regard the up and down floating in the figure as the
jitter of the CPU.
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Fig. 23: AAE vs. memory and skewness.

AAE: Fig. 23 shows the top-k AAE vs memory/skewness
before and after optimization of the algorithm. We can find that
the optimized algorithm is only worse than before optimization
under the real-life dataset of 0.2MB (Fig. 23(b)). In all
remaining cases, our optimization worked.
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Fig. 24: ARE vs. memory and skewness.

ARE: Fig. 24 shows the top-k ARE vs memory/skewness
before and after optimization of the algorithm. We can find that
the optimized algorithm is only worse than before optimization
under the real-life dataset of 0.2MB/0.8MB (Fig. 24(b)). In all
remaining cases, our optimization worked.
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Fig. 25: Precision vs. memory and skewness.

Precision: Fig. 25 shows the top-k precision vs mem-
ory/skewness before and after optimization of the algorithm.
We can find that the optimized algorithm is only worse than
before optimization under the real-life dataset of 0.1MB (Fig.
25(b)). In all remaining cases, our optimization worked.
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APPENDIX B
MATHEMATICAL ANALYSIS

In this appendix, we analyze the error bound for both
frequency and top-k estimation of Cuckoo Counter.

We first consider the case of only pure CC (without min-
heap). Suppose that CC records a network stream with N
packets and n flows. Let ei be the ith flow, whose actual
frequency is fi. We assume the average size of the entryk is
wk, the ratio of packets falling in entryk across all buckets is
λk, and use fp() to refer to the fingerprint() function. The
final frequency estimation of flow ei is

f̂i = fi −Xi + Yi (8)

where Xi is the decrement from k kicks (due to the min()
operation in the replacement strategy, there will only be under-
estimation) and Yi is the increment from fingerprint collision.
The two error bounds of Cuckoo Counter—the lower bound
and the upper bound—result from Xi and Yi respectively. We
will calculate them separately.

A. Lower Bound Analysis of Pure CC

First, for E(Xi), we assume that there is no fingerprint
collision, which means Yi = 0 in this part. Since there are a
total of n flows, but only have 2w×B entries in the structure
to store flows, so there will be n−2wB kicks (each kick will
trigger one min() operation). We assume that Tkick represents
the average number of min() operations applied on each flow,
so we have:

Tkick =
n− 2wB

n
(9)

The above formula is based on the assumption that ei is
randomly selected from the flow set. Combined with formula
(9), we have

E(Xi) = E(fi − f̂i)

= Tkick × E(fi −min(fi,
N

2w
λ1))

= Tkick ×
fi − N

2wλ1

2

= Tkick × (
fi
2

− Nλ1

4w
) (10)

where the third equation is derived from the assumption
that fi has a probability of 1

2 to exceed N
2wλ1 (The average

number of flows falling into entry1 in a bucket). Then we can
use Markov inequality to transform the bound of expectation
into the bound of possibility:

Pr[fi − f̂i ≥ ϵN ] = Pr[Xi − Yi ≥ ϵN ]

≤ Pr[Xi ≥ ϵN ] ≤ E(Xi)

ϵN

=
Tkick
ϵN

× (
fi
2

− Nλ1

4w
) (11)

Lower bound of theoretical error holds. □
Note that when we expand formula (11), we will get a

function of m with the form −[âw + b̂
w ] + ĉ, where â, b̂ and

ĉ are all parameters related to ϵ, N , n, B, fi, and λ1. When

m is relatively large, formula (11) decreases as m increases.
And when 2wB is very close to n, that is, when the number
of entries in the structure can accommodate all flows, Tkick
will approach 0. This will cause our underestimation error to
be close to 0, which is in line with our common sense.

B. Upper Bound Analysis of Pure CC

Second, for E(Yi), assuming that ei is already in A1[h̃1(ei)]
(same as A2[h̃2(ei)]). we introduce indicator variables
Ii,j , (1 ≤ i, j ≤ n) as:

Ii,j =


(i ̸= j) ∧ (fp(ei) = fp(ej))∧

1, [h̃1(ei) = h̃1(ej)∨
h̃2(ei) = h̃2(ej)]

0, else

(12)

The last two conditions in the brackets ensure that ei and
ej are mapped to at least one same bucket, and its probability
can be written as

Pr[h̃1(ei) = h̃1(ej) ∨ h̃2(ei) = h̃2(ej))]

= Pr[h̃1(ei) = h̃1(ej)] + Pr[h̃2(ei) = h̃2(ej))]

− Pr[h̃1(ei) = h̃1(ej) ∧ h̃2(ei) = h̃2(ej))]

≤ 1

w
+

1

w
− 1

w2
<

2

w
(13)

Here we assume hash(ei) is much larger than w. Then we
have:

E(Ii,j) < Pr[fp(ei) = fp(ej)]×
2

w

≤ 1

range(fingerprint)
× 2

w
=

1

w2F−1
(14)

Here we assume the length of fingerprint is F . And since
given the two buckets mapped by ei and ej (and they have a
shared bucket A), ei has a probability of 1

2 being mapped into
A. So

E(Yi) = E(

n∑
j=1

1

2
Ii,jfj) ≤

1

2

n∑
j=1

fjE(Ii,j)

< min(
N

w2F
, w1) (15)

where the second term is the maximum value of entry1’s
frequency. Then we can use Markov inequality to transform
the bound of expectation into the bound of possibility:

Pr[f̂i − fi ≥ ϵN ] = Pr[Yi −Xi ≥ ϵN ]

≤ Pr[Yi ≥ ϵN ] ≤ E(Yi)

ϵN

< min(
1

wϵ2F
,
w1

ϵN
) (16)

Upper bound of theoretical error holds. □

C. Upper Bound Analysis of CC & Min-heap

Next, we discuss the structure of CC & min-heap. For a top-
k flow ei, there are only two situations in the insertion process:
ei is in min-heap and ei is in CC, and ei may be exchanged
between these two structures. But here we only consider the
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error induced in the min-heap. Because for a elephant flow,
even if it is initially stored in the entry1 of the CC that will be
affected by other flows, it will quickly grow into the entry with
larger bits. So we only consider the error of overestimating
(caused by fingerprint collision) this part. When CC is in min-
heap, we have:

f̂i = fi + Yi (17)

where Yi is the increment from fingerprint collision since
ei will only suffer from it. Assuming that ei is already
in A1[h̃1(ei)] (same as A2[h̃2(ei)]).We introduce indicator
variables Ji,j , (1 ≤ i, j ≤ n) as:

Ji,j =


1, (i ̸= j) ∧ (fp(ei) = fp(ej))

∧(h̃1(ei) = h̃1(ej))

0, else

(18)

Then we have:

E(Ji,j) ≤
1

w × range(fingerprint)
≤ 1

w2F
(19)

So

E(Yi) = E(

n∑
j=1

Ji,jfj) ≤
n∑

j=1

fjE(Ji,j) ≤
N

w2F
(20)

Then we can similarly apply Markov inequality to transform
the bound of expectation into the bound of possibility:

Pr[f̂i − fi ≥ ϵN ] ≤ Pr[Yi ≥ ϵN ]

≤ E(Yi)

ϵN
≤ 1

wϵ2F
(21)

Hence the overall error bounds holds by the Eq. (11), (16),
and (21). □

D. Error Rate Comparison Between Pure CC and CM

We define “error rate” as the probability of identifying a
non-occurring flow as non-zero after inserting all network
stream. We return 0 in line 7 of Algorithm 2 when we do
not find the corresponding fingerprint and there is an empty
entry in two buckets. And we return the minimum value of two
entry1 if there is no empty entry. This raises the question: will
we identify more non-occurring flows as non-zero compared
to CM sketch? Our next step is to show that this error rate of
CC is smaller than CM.

We first introduce some parameters. Suppose d and wcm

are the depth and width of CM sketch respectively, wcc is the
width of Cuckoo Counter, n represents the type of flow in
the network stream Number (same as the definition of n in
Section 2.1), M stands for memory usage (unit is MB).

1) For CM Sketch: After inserting all network stream, we
look at a counter in a row, which has probability P1 cnt 0 to be
zero. Here P1 cnt 0=Pr[n flows are mapped to the remaining
(wcm − 1) counters]=(1− 1

wcm
)n. For a packet that does not

appear, we define Pcm as the error rate of CM, we have:{
Pcm = (1− P1 cnt 0)

d = (1− (1− 1
wcm

)n)d

d× wcm × 2 = M × 1024× 1024
(22)

Note that in the paper we take the counter size of CM sketch
as 16 bits (2 bytes).

2) For Cuckoo Counter: After inserting all network flows,
we also define Pcc(error rate) as the probability of identifying
a non-occurring packet as non-zero. Let’s first look at a bucket
in array1, the probability of which is full is defined as P1 occ,
we have: (we assume there are no fingerprint collisions)

P1 occ = 1− (Pr[empty bucket] + Pr[1 entry occupied]

+ Pr[2 entries occupied] + Pr[3 entries occupied])

= 1− [(1− 1

wcc
)n +

(
n

1

)
(
1

wcc
)(1− 1

wcc
)n−1

+

(
n

2

)
(
1

wcc
)2(1− 1

wcc
)n−2 +

(
n

3

)
(
1

wcc
)3(1− 1

wcc
)n−3]

Since n and wcc are quite large, we have:

P1 occ ≈ 1− (1− 1

wcc
)n(1 +

n

wcc
+

n2

2w2
cc

+
n3

6w3
cc

) (23)

Furthermore, we have:

Pcc = Pr[A1[h1(e)] is full ∧A2[h2(e)] is full] (24)

We then want to compute an upper bound on Pcc. We
give an instance of CC that has been inserted, assuming that
there are x1 buckets in array1 with empty entry1, and x2

buckets in array2 with empty entry1. At this time, according
to our algorithm, Pcc =

(wcc−x1)(wcc−x2)
w2

cc
. And, if we connect

array2 after array1, and treat it as a whole array, we choose
a bucket, and the probability that it is full is defined as
P ′
cc = 2wcc−x1−x2

2wcc
. Note that according to the definition of

P ′
cc, it is actually P1 occ(2wcc). We then have:

Pcc − P ′
cc =

(wcc − x1)(wcc − x2)

w2
cc

− 2wcc − x1 − x2

2wcc

=
x1x2 − x1wcc − x2wcc

2w2
cc

< 0 (since x1, x2 < wcc)
(25)

So P ′
cc = P1 occ(2wcc) is an upper bound of Pcc. We end

up with:
Pcc < P1 occ(2wcc)

≈ 1− (1− 1
(2wcc)

)n(1 + n
(2wcc)

+ n2

2(2wcc)2
+ n3

6(2wcc)3
)

2× wcc × 8 = M × 1024× 1024

(26)

Note that in the paper we take the bucket size of Cuckoo
Counter as 64 bits (8 bytes).

To sum up, after inserting the same network stream, the
theoretical probability (error rate) of CC estimating an unseen
flow as non-zero is much lower than that of CM. And
according to the real experimental results, the error rate of
CC is indeed much lower than that of CM.


