
A MATHEMATICAL ANALYSIS

In this section, we provide detailed proofs of the theorems mentioned in the paper.

A.1 Burst Filter Speedup

Theorem A.1. Assume that in multiple time windows 𝑇 , there are 𝑛𝐵𝐹 distinct items, and the total number of items is

𝐸𝐵𝐹 . The Burst Filter contains𝑤 buckets, with each bucket having 𝛾 cells. Let 𝑃𝐵𝑢𝑟 denote the probability of the Burst Filter

capturing the data stream. We have 𝑃𝐵𝑢𝑟 → 1.

Proof. The Burst Filter can hold𝑤 × 𝛾 distinct items. Since the total number of items is much larger than𝑤 × 𝛾 , we
use the appearance frequency of different distinct items to approximate their probabilities in each time window.

For item 𝑒𝑖 , let 𝑝𝑖 denote its probability of arriving at the Burst Filter. Initially, the probability that 𝑒𝑖 is not recorded
in the Burst Filter is 1 − 𝑝𝑖 . After𝑚 data arrivals, the probability that 𝑒𝑖 remains unrecorded is:

𝑃𝑛𝑜𝑡−𝑖𝑛 (𝑒𝑖) ≈
𝑚∏
𝑡=1

(1 − 𝑝𝑖) .

Using the approximation ln(1 − 𝑥) → −𝑥 as 𝑥 → 0, we have

ln(𝑃𝑛𝑜𝑡−𝑖𝑛 (𝑒𝑖)) ≈
𝑚∑︁
𝑡=1

−𝑝𝑖 .

According to the law of large numbers, when the number of incoming data reaches 𝐸𝐵𝐹 ×𝑤×𝛾
𝑛𝐵𝐹

, the probability that new
items will still be inserted into the Burst Filter approaches zero. Therefore, the probability of item 𝑒𝑖 being inserted into
the Burst Filter is:

𝑃𝑖𝑛 (𝑒𝑖) ≈ 1 − exp(−𝑝𝑖 ×
𝐸𝐵𝐹 ×𝑤 × 𝛾

𝑛𝐵𝐹
).

By applying the Hoeffding inequality, we consider 𝑛𝐵𝐹 and𝑤 × 𝛾 :

P(
∑︁

𝑝𝑖𝑃𝑖𝑛 (𝑒𝑖) > 𝜖𝐵𝐹) ≥ 1 − 2exp(−2𝐸𝐵𝐹 × (1 − 𝜖𝐵𝐹)2𝑤𝛾)
𝑛𝐵𝐹

.

From the above proof, we conclude that in practice, there is a substantial volume of data in data streams,
allowing the Burst Filter to capture nearly all data effectively. □

A.2 Persistence Estimation
A.2.1 Error Bound.

Theorem A.2. Let 𝑝𝑖 be the estimated persistence of our method. We have

𝑝𝑖 ≤ 𝑝𝑖 ≤ 𝑇 . (1)

Proof. Let the threshold for 𝐿1 be Δ1 and the threshold for 𝐿2 be Δ2. The number of time windows in 𝑆 is 𝑇 . If
𝑝𝑖 > Δ1, the item is transmitted to 𝐿2; if 𝑝𝑖 > Δ1 + Δ2, it is sent to 𝐿3. The number of hash functions in 𝐿1, 𝐿2, and 𝐿3 is
𝑑1, 𝑑2, and 𝑑3, respectively. Thus, 𝑝𝑖 can be expressed as:

𝑝𝑖 = 𝑝
1
𝑖 + 𝑝

2
𝑖 + 𝑝

3
𝑖 ,

1

2

where 𝑝1
𝑖
, 𝑝2
𝑖
, and 𝑝3

𝑖
represent the estimated persistence in 𝐿1, 𝐿2, and 𝐿3. Subsequently, we determine the upper and

lower boundaries of 𝑝𝑖 . For each 𝑝
𝑗
𝑖
(𝑗 = 1, 2, 3), each arriving item can trigger the mapping, causing 𝑝 𝑗

𝑖
to increase.

Consequently, we have 𝑝 𝑗
𝑖
≥ 𝑝

𝑗
𝑖
(𝑗 = 1, 2, 3). In each time window, 𝑝 𝑗

𝑖
can increase by at most 1, which results in 𝑝𝑖 ≤ 𝑇 .

In summary, we have 𝑝𝑖 ≤ 𝑝𝑖 ≤ 𝑇 . This result indicates that the estimated persistence provided is within
a reasonable range and will not introduce significant deviation when utilized. □

Theorem A.3. Let 𝑛,𝑚 and 𝐿 be the number of buckets in layer 𝐿1, 𝐿2 and 𝐿3, 𝑙 = 𝑒
𝜖 and 𝑑 = ln

(
1
𝛿

)
. For small data

streams, we obtain

P (𝑝𝑖 ⩽ 𝑝𝑖 + 𝜖 ∥𝑝 ∥1) ⩾ 1 − 𝛿. (2)

For medium data streams, where 𝜀 = 𝑒
𝑛×𝑚 and 𝛿 = 𝑒−𝑑1−𝑑2 , it follows that

P(𝑝𝑖 ≤ 𝑝𝑖 + 𝜀 ∥𝑝 ∥1 × ∥𝑝 ∥1
1) ≥ 1 − 𝛿. (3)

For large data streams, 𝜀1 = 𝑒
𝑛×𝑚×𝐿 and 𝛿 = 𝑒−𝑑1−𝑑2−𝑑3 , we conclude that

P(𝑝𝑖 ≤ 𝑝𝑖 + 𝜀1 ∥𝑝 ∥1 × ∥𝑝 ∥1
1 × ∥𝑝 ∥2

1) ≥ 1 − 𝛿. (4)

Proof. For convenience, we define small data streams as those for which 𝑝𝑖 < Δ1. Medium data streams are defined
as Δ1 < 𝑝𝑖 ≤ Δ1 + Δ2, and large data streams correspond to 𝑝𝑖 > Δ1 + Δ2. We take medium data streams as an example.

For medium data streams, let Δ 𝑗𝑝𝑖 = Δ 𝑗𝑝
1
𝑖
+Δ 𝑗𝑝2

𝑖
, where Δ 𝑗𝑝1

𝑖
= 𝐶1

𝑗
[ℎ 𝑗 (𝑒𝑖)] −𝑝1

𝑖
and Δ 𝑗𝑝2

𝑖
= 𝐶2

𝑗
[𝑔 𝑗 (𝑒𝑖)] −𝑝2

𝑖
.𝐶1
𝑖
[𝑗]

denotes the 𝑗𝑡ℎ counter in the 𝑖𝑡ℎ array in layer 𝐿1. Let 𝐸𝑡 , 𝐸1
𝑡 and 𝐸

2
𝑡 be the sets of distinct items arriving in 𝐿1, 𝐿2 and

𝐿3 within the time window 𝑇 .
The set 𝑃𝑖 contains the time windows when 𝑒𝑖 occurs, and 𝑃𝑖 = {1, 2, . . . ,𝑇 } − 𝑃𝑖 . Let

𝐼𝑖, 𝑗,𝑡 =

1, if ∃𝑒𝑘 ∈ 𝐸𝑡 , 𝑖 ≠ 𝑘

∨
ℎ 𝑗 (𝑒𝑖) = ℎ 𝑗 (𝑒𝑘)∨

𝑔 𝑗 (𝑒𝑖) = 𝑔 𝑗 (𝑒𝑘),
0, Otherwise.

𝐸 [Δ 𝑗𝑝𝑖] = 𝐸 [Δ1
𝑗𝑝𝑖] + 𝐸 [Δ

2
𝑗𝑝𝑖]

=
∑︁
𝑡 ∈𝑃𝑖

[
1 −

(
1 − 1

𝑙1

) |𝐸𝑡 |]
×
[
1 −

(
1 − 1

𝑙1

) |𝐸1
𝑡 |
]
,

where |𝐸1
𝑡 | represents the number of items for which Δ1 < 𝑝𝑖 ≤ Δ1 + Δ2. We denote:

∥𝑝 ∥1 =

𝑁∑︁
𝑖=1

𝑝𝑖 =

𝑇∑︁
𝑡=1

|𝐸𝑡 | = ∥𝐸∥1,

and define ∥𝑝 ∥1
1 =

∑
𝑝𝑖>Δ1 𝑝𝑖 as the sum of items whose estimated persistence exceeds Δ1. Therefore, we have

𝐸
[
Δ 𝑗𝑝𝑖

]
≤

∑︁
𝑡 ∈𝑝𝑖

|𝐸𝑡 |
𝑛

×
|𝐸1
𝑡 |
𝑚

≤
∥𝑝 ∥1 × ∥𝑝 ∥1

1
𝑛 ×𝑚 .

From the increment of the limit function, it can be concluded that

𝐸
[
Δ 𝑗𝑝𝑖

]
≥

∑︁
𝑡 ∈𝑝𝑖

1 −
(

1
𝑒

) |𝐸𝑡 |
𝑛
 ×

1 −
(

1
𝑒

) |𝐸1
𝑡 |
𝑚

 .

3

Memory ratios can be adjusted by varying 𝑛 and𝑚 so that Δ 𝑗𝑝𝑖 decreases. We have

P(𝑝𝑖 ≤ 𝑝𝑖 + 𝜀∥𝑝 ∥1 × ∥𝑝 ∥1
1) ≥ 1 − P(∀Δ 𝑗𝑝𝑖 > 𝑒 × E[Δ 𝑗𝑝𝑖]).

By Markov’s inequality, it follows that

1 − P(∀Δ 𝑗𝑝𝑖 > 𝑒 × E[Δ 𝑗𝑝𝑖]) ≥ 1 − 𝑒−𝑑1−𝑑2 ≥ 1 − 𝛿.

For large data streams,

𝐸
[
Δ 𝑗𝑝𝑖

]
≤

∑︁
𝑡 ∈𝑝𝑖

|𝐸𝑡 |
𝑛

×
|𝐸1
𝑡 |
𝑚

×
|𝐸2
𝑡 |
𝐿

≤
∥𝑝 ∥1 × ∥𝑝 ∥1

1 × ∥𝑝 ∥2
1

𝑛 ×𝑚 × 𝐿 ,

where ∥𝑝 ∥2
1 is the sum of items filtered by 𝐿1 and 𝐿2. Let 𝜀1 = 𝑒

𝑛×𝑚×𝐿 and 𝛿1 = 𝑒−𝑑1−𝑑2−𝑑3 , and the derivation is similar
to the above.

P(𝑝𝑖 ≤ 𝑝𝑖 + 𝜀1∥𝑝 ∥1 × ∥𝑝 ∥1
1 × ∥𝑝 ∥2

1) ≥ 1 − 𝑒−𝑑1−𝑑2−𝑑3 ≥ 1 − 𝛿1 .

From the proof, it is evident that we can obtain the estimated persistence in a finite number of iterations
and calculations. The time complexity of our estimation method is O(ln(1

𝛿
)), while the space complexity is

O
(

1
𝜀 ln(1

𝛿
)
)
. □

A.2.2 Comparison with Related Work.

Theorem A.4. Let 𝑝𝑂𝑂
𝑖

be the estimated persistence of the On-Off Sketch. Under the same memory conditions, we filter

the entire data stream by assigning a different number of counters and 𝑑𝑖 for small, medium, and large data streams. For

simplicity, we use the same names for the hash functions in the On-Off Sketch as in our method, even though they have

different numbers of counters. Let Δ𝑂𝑂
𝑗
𝑝𝑖 = 𝐶 𝑗 [ℎ 𝑗 (𝑒𝑖)] − 𝑝𝑖 , where 𝑝𝑖 = min1≤ 𝑗≤𝑑

(
𝐶 𝑗 [ℎ 𝑗 (𝑒𝑖)]

)
, and 𝑑 represents the

number of hash functions in the On-Off Sketch. There is:

𝐸

(
Δ𝑂𝑂𝑗 𝑝𝑖

)
> 𝐸

(
Δ 𝑗𝑝𝑖

)
.

Proof. For small data streams, 𝐸 [Δ 𝑗𝑝𝑖] can be represented by the following formula in both our method and the
On-Off Sketch:

𝐸 [Δ 𝑗𝑝𝑖] =
∑︁
𝑡 ∈𝑃𝑖

[
1 −

(
1 − 1

𝑛

) |𝐸𝑡 |]
,

Since we utilize low-byte storage, there is more counters, allowing us to conclude that 𝐸
(
Δ 𝑗𝑝𝑖

)
≤ 𝐸

(
Δ𝑂𝑂
𝑗
𝑝𝑖

)
. For

medium data streams, we have

1 −
(
1 − 1

𝑚

) |𝐸1
𝑡 |

< 1.

Therefore, it follows that

𝐸

(
Δ𝑂𝑂𝑗 𝑝𝑖

)
> 1 −

(
1 − 1

𝑛

) |𝐸𝑡 |
> 𝐸

(
Δ 𝑗𝑝𝑖

)
.

For large data streams, a similar argument holds. In summary, the above inequalities indicate that our
method is superior to the On-Off Sketch. □

Theorem A.5. Let 𝑝𝑖 = 𝐵 [ℎ1 (𝑒𝑖)] [𝑒𝑖] and denote the On-Off Sketch estimate as 𝑝𝑂𝑂
𝑖

, where 𝐵 [𝑖] is the 𝑖th bucket. We

have the following inequality:

𝑝𝑖 ≤ 𝑝𝑖 ≤ 𝑝𝑂𝑂𝑖 ≤ 𝑇 . (5)

4

Proof. The On-Off method employs an alternative approach to record persistence. Our method enhances this by
using a cold-item filter, which reduces the probability of hash collisions caused by other items when the estimator is
recorded. We assume that, in the initial state, 𝑝𝑖 = 𝑝𝑂𝑂𝑖 . When a new item arrives, several scenarios may occur:

Case 1:When 𝑒𝑖 arrives and is present in 𝐵 [ℎ1 (𝑒𝑖)] [𝑒𝑖], whether it results in an insertion or a collision, if the number
of counters remains the same, then from a probabilistic perspective, (5) is still valid. Under normal circumstances, when
𝑒𝑖 arrives, we can consider that (5) holds. If 𝑒𝑖 is not found in 𝐵 [ℎ1 (𝑒𝑖)] [𝑒𝑖], the occurrence of insertion or hash collision
does not affect the validity of (5).

Case 2: When 𝑒 𝑗 (where 𝑖 ≠ 𝑗) arrives and 𝐶1 [ℎ1 (𝑒𝑖)] = 𝐶1 [ℎ1 (𝑒 𝑗)], this may lead to errors due to collisions.
However, our method filters out many cold items, resulting in fewer items reaching the entry point. Thus, we have
|𝑒 𝑗 | < |𝑒𝑂𝑂

𝑗
|, where |𝑒 𝑗 | and |𝑒𝑂𝑂

𝑗
| represent the number of 𝑒 𝑗 in our method and the On-Off Sketch, respectively. This

results in a smaller value of 𝑝 . If no collision occurs, there is no change in 𝑝 . □

Therefore, our method outperforms the On-Off Sketch in finding persistent items.

A.3 Skewness-Aware Error Bound

Theorem A.6. Skewness-Aware Error Bound Assume the persistence of items follows a Zipf distribution with

parameter 𝑠 , i.e., the persistence of the 𝑖-th most frequent item is:

𝑝𝑖 =
1

𝑖𝑠𝐻
(𝑠)
𝑁

, where 𝐻 (𝑠)
𝑁

=

𝑁∑︁
𝑘=1

1
𝑘𝑠

.

The expected error upper bound of the Hypersistent Sketch satisfies:

E[𝑝𝑖 − 𝑝𝑖] ≤
𝐻

(𝑠)
𝑁

𝑛︸︷︷︸
Cold-item error

+
𝐻

(𝑠−1)
𝑁

𝑚︸ ︷︷ ︸
Medium-hot item error

,

where 𝑛 and𝑚 are the number of counters in 𝐿1 and 𝐿2 layers of the Cold Filter, respectively.

Proof. Stage 1: Cold Items (𝑝𝑖 ≤ Δ1)
Collision Probability: For items processed in 𝐿1, the hash collision probability is approximated via Poisson distribution:

P(1)coll = 1 −
(
1 − 1

𝑛

)𝐻 (𝑠)
𝑁

≈
𝐻

(𝑠)
𝑁

𝑛

©«1 −
𝐻

(𝑠)
𝑁

2𝑛
ª®¬ .

Expected Error : Summing over all cold items:

E[𝜖cold] =
𝑁∑︁
𝑖=1

𝑝𝑖 · P(1)coll =
1

𝐻
(𝑠)
𝑁

·
𝐻

(𝑠)
𝑁

𝑛

𝑁∑︁
𝑖=1

1
𝑖𝑠

=
𝐻

(𝑠)
𝑁

𝑛
.

Stage 2: Medium-hot Items (Δ1 < 𝑝𝑖 ≤ Δ1 + Δ2)
Adjusted Distribution: After filtering by 𝐿1, the remaining items follow a truncated Zipf distribution with parameter

𝑠 − 1:

𝑝′𝑖 ∝
1

𝑖𝑠−1 , 𝐻
(𝑠−1)
𝑁

=

𝑁∑︁
𝑘=1

1
𝑘𝑠−1 .

5

Collision Probability: Collision probability in 𝐿2 becomes:

P(2)coll ≈
𝐻

(𝑠−1)
𝑁

𝑚
.

Expected Error :

E[𝜖mid] =
𝑁∑︁
𝑖=1

𝑝′𝑖 · P
(2)
coll =

𝐻
(𝑠−1)
𝑁

𝑚
.

Stage 3: Extreme-hot Items (𝑝𝑖 > Δ1 + Δ2)
Full ID storage in the Hot Part eliminates hash collisions. Replacement errors decay as:

Preplace ∼
1

Δ2 + 1
→ 0. (𝑠 → ∞).

Total Error Bound: Combining all stages:

E[𝑝𝑖 − 𝑝𝑖] ≤
𝐻

(𝑠)
𝑁

𝑛
+
𝐻

(𝑠−1)
𝑁

𝑚
.

Skewness Sensitivity Analysis The error bound varies with 𝑠 as follows:
Low Skewness (𝑠 → 0):

𝜖 (𝑠) ≈ 𝑁

𝑛
+ 𝑁 2

𝑚
. (matches uniform distribution),

moderate Skewness (1 < 𝑠 < 2):

𝜖 (𝑠) ≈ 𝜁 (𝑠)
𝑛

+ 𝑁 2−𝑠

𝑚(2 − 𝑠) ,

high Skewness (𝑠 ≥ 2):

𝜖 (𝑠) ≈ 𝜁 (𝑠)
𝑛

+ 𝜁 (𝑠 − 1)
𝑚

.

For 𝑠1 > 𝑠2 ≥ 0, the improvement ratio satisfies:

𝜖 (𝑠2)
𝜖 (𝑠1)

∼ 𝑁 𝑠1−𝑠2 .

□

In conclusion, the above proof indicates that our method has good adaptability to data with different skewness.When
the skewness is large, our method performs better; when the skewness is not large, the data distribution is
relatively uniform, and our method is not inferior to the comparison method.

A.4 Threshold Sensitivity Analysis

Theorem IV.7: Threshold Sensitivity and Pareto Optimality Let the Cold Filter thresholds be parameterized as:

Δ1 = 𝑘1 ·
log𝑛

log log𝑛
, Δ2 = 𝑘2 · Δ1 = 𝑘1𝑘2 ·

log𝑛
log log𝑛

.

where 𝑘1, 𝑘2 are tunable constants. The memory-error trade-off satisfies:

Memory Efficiency ∝ 1
𝑘1𝑘2

.

Relative Error ∝
√
𝑘1

𝑛1/2 +
3√
𝑘2

𝑚1/3 .

6

Pareto optimality is achieved when:

𝑘1 = Θ

(√︂
𝑛

log𝑛

)
, 𝑘2 = Θ

(
3

√︂
𝑚

log𝑚

)
.

Proof. The Cold Filter memory consumption consists of two layers:

𝑀cold = 𝑛 · ⌈log2 Δ1⌉ +𝑚 · ⌈log2 Δ2⌉ .

Substituting the threshold parameterization:

𝑀cold ≈ 𝑛 log(𝑘1 log𝑛) +𝑚 log(𝑘1𝑘2 log𝑛)

= 𝑛(log𝑘1 + log log𝑛) +𝑚(log𝑘1 + log𝑘2 + log log𝑛)

≈ 𝑛 log𝑘1 +𝑚(log𝑘1 + log𝑘2),

under fixed total memory𝑀total = 𝑀cold +𝑀hot:

𝑘1𝑘2 ∝ 1
𝑀cold

.

We analyze the relationship between the error and the thresholds, from Theorem IV.6, the error bound can be
expressed as:

𝜖 ∝
𝐻

(𝑠)
𝑁

𝑛
+
𝐻

(𝑠−1)
𝑁

𝑚
.

For general distributions, using moment bounds:

𝐻
(𝑠)
𝑁

∝ 𝑁 1−𝑠

𝐻
(𝑠−1)
𝑁

∝ 𝑁 2−𝑠 ,

substituting the threshold relationships:

𝜖 ∝ 𝑁 1−𝑠

𝑛
+ 𝑁 2−𝑠

𝑚

=
𝑁 1−𝑠

Δ
1/2
1

+ 𝑁 2−𝑠

Δ
1/3
2

=

√
𝑘1

𝑛1/2 +
3√
𝑘2

𝑚1/3 .

Pareto Optimality Condition, Define the optimization problem:

min
𝑘1,𝑘2

(√
𝑘1

𝑛1/2 +
3√
𝑘2

𝑚1/3

)
s.t. 𝑘1𝑘2 = 𝐶.

Using Lagrange multipliers with L =

√
𝑘1

𝑛1/2 +
3√
𝑘2

𝑚1/3 + 𝜆(𝑘1𝑘2 −𝐶):

𝜕L
𝜕𝑘1

=
1

2𝑛1/2𝑘1/2
1

+ 𝜆𝑘2 = 0

𝜕L
𝜕𝑘2

=
1

3𝑚1/3𝑘2/3
2

+ 𝜆𝑘1 = 0,

7

dividing the two equations:
3𝑚1/3𝑘2/3

2

2𝑛1/2𝑘1/2
1

=
𝑘2
𝑘1
,

solving yields the optimal scaling:

𝑘1 ∝
√︂

𝑛

log𝑛
, 𝑘2 ∝ 3

√︂
𝑚

log𝑚
.

We discuss Pareto optimality of threshold parameters, for real-world deployment with 𝑛 =𝑚, the optimal thresholds
satisfy:

Δ2
Δ1

= Θ
(
(log𝑛)1/6

)
.

□

This ratio automatically adapts to data scale while maintaining near-optimal performance. The above proof shows
that our method behaves differently for different thresholds, and gives the memory allocation and the
relationship between error and threshold parameters. In addition, the Pareto optimality of the theoretical
threshold is given in the end, which can guide us to set the corresponding threshold parameters in the
experiment.

A.5 Improved Computational Efficiency by Burst Filter

Theorem IV.8 Comparison of computational efficiency Consider a stream of data items, with the total number
of items denoted as 𝑀 . When only the cold filter and hot part are available, data is processed by the hash function
2𝑚 times upon reaching the cold filter. Next, data with persistence exceeding the threshold 𝐷1 + 𝐷2 is reprocessed in
the hot part. With the introduction of the burst filter, data undergoes𝑚 hash function calculations through the burst
filter. Subsequently, data whose persistence exceeds 𝐷1 is processed twice into the cold filter. If the persistence further
exceeds 𝐷1 +𝐷2, one hash is performed for the hot part. We will compare the two methods sequentially under different
data distributions.

Under various data distributions, such as uniform distribution, exponential distribution and Zipf distribution,
incorporating a Burst Filter significantly increases computing efficiency by 2×.

Proof. Uniform distribution: Suppose the data is of type 𝐾 and the frequency of each data type is 𝑀
𝐾
. In the

absence of a burst filter, each item is evaluated 2𝑚 times by the hash function. If all items are hot, the total number of
hash calculations is𝑀 (2𝑚 + 1); if none are hot, the total number of hash calculations is𝑀 · 2𝑚. In the case with a burst
filter,𝑀𝑚 is calculated through the burst filter first. If the persistence exceeds 𝐷1, the total count becomes𝑀 (𝑚 + 2);
if all items are hot, the total count is 𝑀 (𝑚 + 3). For the same data stream, after adding the burst filter, the new total
number of computations is reduced by𝑀 (𝑚 − 2) compared to the previous total, resulting in an efficiency increase of
2×.

Exponential distribution: And the above assumptions, the exponential distribution, each item appears the
probability is

𝑓 (𝑥) = 𝜆𝑒−𝜆𝑥 (𝜆 > 0).

The probability distribution function is

𝐹 (𝑥) = 1 − 𝑒−𝜆𝑥 (𝜆 > 0).

8

The number of items whose persistence exceeds 𝐷1 is 𝑀 × 𝑒𝐷1 . Therefore, in the absence of burst filter, the total
number of hash function computations is

𝑀 × 2𝑚 +𝑀 × 𝑒−𝜆 (𝐷1+𝐷2) .

In the case of burst filter, the total number of hash function computations is

𝑀 ×𝑚 +𝑀 × (𝑒−𝜆𝐷1 − 𝑒−𝜆 (𝐷1+𝐷2)) × 2 +𝑀 × 𝑒−𝜆 (𝐷1+𝐷2) .

Efficiency ratio is

R =
𝑀 ×𝑚 +𝑀 × (𝑒−𝜆𝐷1 − 𝑒−𝜆 (𝐷1+𝐷2)) × 2 +𝑀 × 𝑒−𝜆 (𝐷1+𝐷2)

𝑀 × 2𝑚 +𝑀 × 𝑒−𝜆 (𝐷1+𝐷2)
≈ 1

2
.

Zipf distribution: For 𝑁 unique items with exponent 𝑠 > 1, the probability density function of the Zipf distribution
is given by:

𝑃 (𝑘) = 1/𝑘𝑠
𝐻𝑁,𝑠

, where 𝐻𝑁,𝑠 =
𝑁∑︁
𝑛=1

1
𝑛𝑠
.

Cumulative distribution function of Zipf distribution is

𝐹 (𝐾) =
𝐻𝐾,𝑠

𝐻𝑁,𝑠
, 𝐻𝐾,𝑠 =

𝐾∑︁
𝑛=1

1
𝑛𝑠
.

For total data volume𝑀 and rank thresholds 𝐾1, 𝐾2, (𝐾1 > 𝐾2), assume that the persistence of items ranked in 𝐾1

and 𝐾2 exceeds the thresholds 𝐷1 and 𝐷1 + 𝐷2:

𝑁𝐷1 = 𝑀 ·
𝐻𝐾1,𝑠

𝐻𝑁,𝑠

𝑁𝐷1+𝐷2 = 𝑀 ·
𝐻𝐾2,𝑠

𝐻𝑁,𝑠
.

The total number of times calculated respectively when Burst filter is not used and when Burst filter is used is 𝐻NoBF

and 𝐻BF.

𝐻NoBF = 2𝑚𝑀 +𝑀 ·
𝐻𝐾2,𝑠

𝐻𝑁,𝑠
.

𝐻BF =𝑚𝑀 + 2𝑀 ·
𝐻𝐾1,𝑠

𝐻𝑁,𝑠
+𝑀 ·

𝐻𝐾2,𝑠

𝐻𝑁,𝑠
.

Efficiency ratio is

R =
𝑚𝑀 + 2𝑀 · 𝐻𝐾1,𝑠

𝐻𝑁,𝑠
+𝑀 · 𝐻𝐾2,𝑠

𝐻𝑁,𝑠

2𝑚𝑀 +𝑀 · 𝐻𝐾2,𝑠
𝐻𝑁,𝑠

≈ 1
2
.

To sum up, under the three data distributions, the effect of using burst filter has been greatly improved,
achieving twice the throughput.

□

	A Mathematical Analysis
	A.1 Burst Filter Speedup
	A.2 Persistence Estimation
	A.3 Skewness-Aware Error Bound
	A.4 Threshold Sensitivity Analysis
	A.5 Improved Computational Efficiency by Burst Filter

