
Hypersistent Sketch: Enhanced Persistence
Estimation via Fast Item Separation

Lu Cao*
Harbin Institute of Technology

(Shenzhen)

Qilong Shi*
Tsinghua University

Weiqiang Xiao
Harbin Institute of Technology

(Shenzhen)

Nianfu Wang
Harbin Institute of Technology

(Shenzhen)
Wenjun Li

Peng Cheng Laboratory
Zhijun Li

Harbin Institute of Technology
Weizhe Zhang

Harbin Institute of Technology
(Shenzhen)

Mingwei Xu
Tsinghua University

Abstract—Efficient data stream processing, particularly for
persistence estimation, is crucial in handling high-velocity data
streams characterized by skewed distributions of item frequen-
cies. Unlike more straightforward frequency metrics, persistence
captures items’ recurrence across multiple time windows, requir-
ing nuanced processing approaches. In response, we introduce
the Hypersistent Sketch, an algorithm that significantly enhances
persistence estimation through innovative filtering techniques.
Our design incorporates a Cold Filter to address the skewed
nature of data streams where a few high-frequency (hot) items
dominate. This filter allows for differential treatment by using
smaller counters for most low-frequency (cold) items, thus con-
servatively allocating memory resources that would otherwise be
sized uniformly based on hot items. However, the Cold Filter can
reduce throughput due to its segregative processing. To mitigate
this, we implement a Burst Filter, which optimizes the processing
of hot items. The Burst Filter significantly improves throughput
by preventing repeated insertions within a single window—where
persistence increases by at most one—and deferring the insertion
until the window’s end. Comparative evaluations demonstrate
that the Hypersistent Sketch outperforms existing solutions like
the On-Off Sketch, offering up to 3 times improved throughput
while maintaining competitive accuracy and substantially reduc-
ing memory usage in handling large-scale data streams.

Index Terms—Data stream, Persistence estimation, Approxi-
mate algorithm, Sketch.

I. INTRODUCTION

In the realm of data stream processing, an important char-
acteristic – persistence, has received growing attention. Given
an item e and a data stream with T non-overlapping and
contiguous time windows, the persistence of e is defined
as the number of time windows where e appears. The per-
sistent items—those that appear consistently over time—are
paramount. Their identification and quantification are critical

*Lu Cao and Qilong Shi are co-first authors, and they conducted this work
under the guidance of corresponding authors Wenjun Li and Weizhe Zhang.
Lu Cao, Nianfu Wang, Zhijun Li and Weizhe Zhang are also with Peng Cheng
Laboratory. This work was supported in part by the Major Key Project of Peng
Cheng Lab (PCL2023A06), the Joint Funds of the National Natural Science
Foundation of China (U22A2036), the National Natural Science Foundation of
China (62221003, 62402141, 62102203), the Science and Technology Innova-
tion Project of Guangdong (2023TQ07X362), the NSFC/RGC Collaborative
Research Scheme (62461160332 & CRS HKUST602/24), Shenzhen Col-
leges and Universities Stable Support Program (GXWD20220817124251002,
GXWD20231129102636001), Shenzhen Stable Supporting Program (General
Project) (GXWD20231130110352002), Guangdong Basic and Applied Basic
Research Foundation (2023A1515110271, 2025A1515011785). The source
code of this paper can be downloaded from the Website [1] and the GitHub [2].

across various applications, from security-related tasks like
intrusion detection and fraud prevention to operational en-
hancements in sectors such as transportation analytics [3], [4],
[5]. For example, persistent network threats may be strategi-
cally deployed at low frequencies to evade traditional detection
systems, posing serious security risks [6], [7]. Similarly, in
digital advertising, sophisticated schemes utilize automated
scripts for click fraud, repeatedly engaging with ads to il-
legitimately boost revenue. Beyond malicious activities [8],
[9], understanding item’s persistence is also invaluable in
identifying regular patterns [10], [11], [12], [13], [14], [15],
[16], [17], [18], [19], optimizing operations [20], [21], and im-
proving decision-making processes in dynamic environments
like traffic flow management [22], [23], [24].

To bolster these applications in persistence estimation, one-
pass Sketch algorithms are seen as particularly promising due
to their efficiency and effectiveness [25], [26]. Recent advance-
ments have focused on refining Sketch algorithms in various
domains, including memory usage [27], [28], accuracy [29],
[30], and processing speed [31], [32]. Yet, these enhancements
often struggle to balance the trade-offs between memory usage
and accuracy, a critical aspect given the increasing volume of
data and the constraints of limited computational and memory
resources [33], [34]. Taking the well-known On-Off Sketch
[35] as an example, its primary data structure is similar to
the traditional frequency estimation algorithm, the Count-Min
Sketch, consisting of multiple columns of fixed-size counter
arrays. In real-world scenarios, data streams exhibit high
skewness, meaning the persistence of most items is relatively
low (e.g., ≤ 5, termed as cold items), while a minority of
items show high persistence (referred to as hot items) [36],
[37], [38], [39], [40], [41], [42], [43]. To accurately capture
the persistence of hot items, the On-Off Sketch must allocate
larger memory blocks (e.g., 32-bit counters) for each counter.
This approach, however, leads to substantial memory wastage
as many counters (those capturing cold items) do not utilize
their higher bits.

We posed the question: Is it possible to create a persistence
estimation algorithm that surpasses previous algorithms in both
accuracy and speed? In response, we developed the Hyper-
sistent Sketch, which outperforms the well-known algorithm,
the On-Off Sketch, across all metrics. The design of the
Hypersistent Sketch includes:

1) Triple-Stage Structure: It consists of Burst Filter, Cold
Filter, and Hot Part. The Hot Part, akin to the reversible
On-Off Sketch, stores complete IDs and persistence
levels to facilitate finding persistent items directly.

2) Cold Filter for Memory Efficiency: It preemptively
identifies cold items, allowing only hot items to proceed
to the Hot Part. By allocating different counter sizes to
these two sections, we effectively increase the number
of counters under the same total memory, thereby sig-
nificantly enhancing accuracy.

3) Burst Filter for Speed Enhancement: Created to
tackle speed issues introduced by the Cold Filter, which,
while increasing accuracy, reduces overall throughput.
We observed that an item’s persistence could only be
incremented once within a single time window. Thus,
items appearing multiple times within a window are
retained in the Burst Filter to avoid unnecessary updates
to subsequent structures. At the end of each window, all
items from the Burst Filter are uniformly updated to
the Cold Filter and Hot Part. This strategy dramatically
increases throughput, potentially even surpassing that of
the original On-Off Sketch.

To evaluate real-world performance, we implemented the
Hypersistent Sketch on CPU platforms, conducting tasks that
include persistence estimation and identifying persistent items.
The Hypersistent Sketch achieves significantly better results
than On-Off Sketch across all datasets, with error rates im-
proved by up to an order of magnitude and throughput twice as
fast. These experimental results demonstrate the Hypersistent
Sketch’s real-world feasibility and scalability.

II. BACKGROUND

A. Problem Statement

• Data Stream Model: Consider a time-sequenced
data stream S, represented as a set of tuples
{(e1, t1), (e2, t2), . . . , (eN , tN)}, where each tuple (ei, ti)
consists of a data item identifier ei (such as a quintuple or
source IP in network packets) and its arrival time ti (the ti is
monotonically increasing). The set of data items E is defined
as E = {e | ∃t such that (e, t) ∈ S}.
• Window: The time range [t1, tN] of the data stream S is
evenly divided into w time windows, each of size R = (tN −
t1)/w. These windows are represented as a set W = {[t1, t1+
R], [t1 +R, t1 + 2R], . . . , [t1 + (w − 1)R, tN]}.
• Persistence: For a data stream S, the persistence of an item
ei is defined as the number of windows in which it appears,
denoted pei . It is formally defined as:

pei = |{[l, r] | (ei, t) ∈ S and t ∈ [l, r]}| .

• Persistence Estimation: For all items in E, the task is to
estimate their persistence.
• Finding Persistent Item: We define a threshold α, where
an item ei is considered α-persistent if its persistence pei ≥
α ·w, that is, it appears in at least α times the total number of
windows (the maximum persistence). The goal is to find all
such α-persistent items.

B. Related Work
This subsection reviews work related to estimating persis-

tence in data streams, a concept closely related to frequency
estimation. The primary distinction between these two lies
in their counting approach: while frequency estimation ag-
gregates every occurrence of an item, persistence estimation
counts an item only once per window, regardless of how many
times it appears within that window.

This difference has led to innovative adaptations of existing
frequency estimation algorithms [44], [26], [45], [46], [47].
One straightforward approach is to modify a frequency es-
timation Sketch by incorporating a deduplication step within
each window, ensuring each item updates the Sketch’s counter
at most once per window. The PIE (Persistence via Incre-
mental Estimation) algorithm [36] exemplifies this approach
by combining a Count-Min (CM) Sketch [48] for frequency
estimation with a Bloom Filter (BF) [49] for window-based
deduplication. Here’s how it works:

Remove duplicates

𝒆𝟑
𝒉(𝒆𝟑)

hash num d_1

0

1

...

0

1

12 31

...

66

... 0

90 ...

44

...

22 ...

𝒉𝟏

Persistence Estimate

𝒉𝟐

CM Sketch hash num d_2
Bloom filter

Remove Duplicates

𝒆𝟑
(𝒆𝟑)

BF hash num 𝒅𝟏

0

1

...

0

1

12 31

...

66

... 0

90 ...

44

...

22 ...

𝒉𝟏

Persistence Estimate

𝒉𝟐

CM Sketch hash num 𝒅𝟐

𝒉

Fig. 1: Insertion of the strawman solution.

PIE Algorithm: As shown in Figure 1, at the start of each
window, when an item e arrives, it is hashed by d1 hash
functions to d1 bits in a Bloom Filter. If any of these d1 bits
is 0, indicating e has not yet appeared in the current window,
the bits are set to 1, and e is added to the CM Sketch on
the right. The CM Sketch consists of d2 rows of arrays, each
containing w counters. The item e is hashed by d2 different
hash functions, each mapping to one counter per row, and
these counters are incremented. If all d1 bits in the Bloom
Filter are 1, it indicates that e has already been accounted for
in the current window, and no further action is taken.

When querying the persistence of an item e2, the algorithm
checks the CM Sketch and returns the minimum value among
the counters e2 is mapped to by its d2 hash functions.

Limitations: The PIE method has its shortcomings. First,
the Bloom Filter is prone to false positives, which may report
that an item has appeared when it has not. This can prevent
a new item from being added to the CM Sketch, leading to
underestimating its persistence. Additionally, hash collisions
in the CM Sketch can cause counters to be incremented
multiple times within a single window, even though an item’s
persistence should increase by only one per window. This
results in a significant overestimation of persistence.

The well-known algorithm, the On-Off Sketch [35], made
several improvements to address the inherent problems ob-
served in previous approaches. There are two versions of
the On-Off Sketch: one for persistence estimation (Version
1), which does not store item IDs, and another for finding
persistent items (Version 2), which does store item IDs. Below,
we discuss each version.

𝒉𝟐𝒆𝟑 ...

...
𝒉𝟏

𝒉𝟑

d arrays

𝑒2,

𝑒3,

𝑒6,

𝒐ff, 𝟔

𝒐𝒏, 𝟏

𝒐ff, 𝟑

w counters

Fig. 2: An illustration of the On-Off Sketch framework.

On-Off Sketch Version 1: As shown in Figure 2, this
version resembles the structure of a CM Sketch but adds a
one-bit flag to each counter to indicate its state as either “on”
or “off”. This flag determines whether the counter can be
updated. When an item e arrives, it is mapped by d hash
functions to d counters. Only those counters that are “on”
are updated, after which their flags are set to “off”. At the
end of each window and the start of a new one, all flags are
reset to “on”. This mechanism ensures that within a window,
a counter is incremented at most once, aligning with the
definition of persistence and significantly reducing the risk of
overestimation.

𝒐ff, 𝟕

… 𝑲𝒆𝒚 − 𝑽𝒂𝒍𝒖𝒆 𝒑𝒂𝒊𝒓𝒔

𝒆𝟑

𝒆𝟓 𝒐𝒏, 𝟐
𝒉𝟐

𝒉𝟏 𝒆𝟏: (𝒐𝒏, 𝟖) 𝒆𝟕: (𝒐𝒏, 𝟑)

𝒆𝟗: (𝒐ff, 𝟏) 𝒆𝟒: (𝒐𝒏, 𝟐)

Fig. 3: On-Off Sketch for finding persistent items.

On-Off Sketch Version 2: This version consists of an array
of buckets, each containing multiple cells, as shown in Figure
3. Each cell has the structure ⟨ID, flag, counter⟩, and each
bucket has a global cell ⟨flag, counter⟩. When an item e
arrives:

1) If e is already in the bucket, its counter is updated based
on the on/off flag.

2) If e is not in the bucket and there is an empty cell, e is
added as ⟨e, off, 1⟩.

3) If e is not in the bucket and the bucket is full, the global
cell is updated. If the global cell’s counter exceeds the
minimum counter in the bucket’s cells, e is swapped into
a bucket cell.

Limitations: Both versions do not account for the high
skewness typical of natural data streams, where only a few
items (hot items) have high persistence, while the majority
(cold items) have persistence less than 5 (As shown in Figure
4, the CDF plots of persistence for the three datasets validate
this point). Without prior knowledge of which items are hot, all
counters must be large enough (e.g., 32-bit) to accommodate
potential hot items without risk of overflow, leading to low
memory utilization. Additionally, in Version 2, many cold
items and resulting hash collisions can cause frequent swaps
between the global counter and bucket cells, severely overesti-
mating persistence. This highlights the motivation behind our
design: to separate cold and hot items within the data stream
and handle them differently, which could greatly improve
memory efficiency and reduce errors without sacrificing speed.

0 200 400 600 800
Persistence

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(a) CDF-CAIDA

0 400 800 1200 1600 2000 2400 2800 3200
Persistence

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(b) CDF-Campus

0 200 400 600
Persistence

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(c) CDF-MAWI

Fig. 4: Persistence variation across datasets.

III. HYPERSISTENT SKETCH DESIGN

In this section, we first show the details of our designed
Hypersistent Sketch, including algorithm framework, data
structures, and basic operations. After that, we give a specific
running example of Hypersistent Sketch. Finally, we discuss
the optimization of Hypersistent Sketch.

A. Algorithm Framework Overview

Stage 2 Stage 3

𝒆

Filter Cold
Non-persistence items

Save Hot
Persistence items

Stage 1

𝑨𝒄𝒄𝒆𝒍𝒆𝒓𝒂𝒕𝒆
Burst items

Burst
Filter

Cold
Filter

Hot
Part

Fig. 5: Algorithm framework of Hypersistent Sketch.

Figure 5 illustrates the overall structure of the Hypersistent
Sketch, which is divided into three stages: the Burst Filter for
acceleration, the Cold Filter for storing cold items, and the
Hot Part for storing hot items. In the following sections, we
will introduce these components from right to left, aligning
with the design sequence of our approach.

B. Hot Part (Stage 3)

Stage 3

𝑬

Key: ID item
Per: persistence
Flag: on-off bit

key per flag

Hot Part

E,126,off

Bucket 𝑩"𝒊,𝒋

𝜷 𝒆𝒏𝒕𝒓𝒊𝒆𝒔

E’’,1,on

𝑯(⋅)

...... E’,201,off

......
...

...𝝀
𝒃𝒖𝒄𝒌𝒆𝒕𝒔

Fig. 6: Data structure of the Hot Part.

Figure 6 illustrates the data structure of the Hot Part, which
consists of λ buckets, each containing β entries. Each entry
stores an item’s ID, a persistence value, and an on-off flag
indicating whether the entry has been updated in the current
time window (as each entry can be updated at most once within
a single window). When an item E arrives, it is hashed into
the H(E)-th bucket B[H(E)] via the hash function H(·). The
entries in the bucket are then sequentially checked under the
following three cases:

Algorithm 1: Insert Stage3(e) ▷ Hot Part
Input: An item e, entries within buckets containing

IDs keys, persistence per, and status flag
1 replace← null;
2 bucket← L3[H(e)];
3 for entry ∈ bucket do
4 if entry.key = null || (entry.key =

e && entry.flag = on) then
5 entry.key ← e;
6 entry.flag ← off;
7 entry.per ← entry.per + 1;
8 return; ▷ If e is found
9 end

10 if replace = null || entry.per < replace.per then
11 replace← entry; ▷ If e is not found
12 end
13 end
14 if H(e) % (replace.per + 1) = 0 then
15 replace.key ← e;
16 replace.per ← replace.per + 1;
17 replace.flag ← off;
18 end
19 ▷ Replace with probability 1

per+1

1) If B[H(E)] contains E: If the flag is on, the persistence
value is incremented by 1, and the flag is set to off. If
flag is off, no operation is performed.

2) If B[H(E)] does not contain E but has an empty entry:
The item ⟨E, 1, off⟩ is inserted into the empty entry.

3) If B[H(E)] neither contains E nor has any empty
entries: The entry with the smallest persistence value
is probabilistically replaced, following the replacement
strategy outlined in Algorithm 1.

• Limitations: In real-world data streams, the frequency dis-
tribution is typically highly skewed, which also applies to the
persistence distribution (as shown in Figure 4). Specifically,
most items exhibit low persistence (cold items), while a small
subset of items demonstrate high persistence (hot items). This
skewness introduces a key challenge for the data structure
illustrated in Figure 6: in the aforementioned case 3, some
potential hot items (which are critical in many tasks) might be
replaced by a large number of cold items, leading to a decline
in the accuracy of tasks aimed at identifying persistent items.

A straightforward and intuitive solution to address these
challenges is to separate hot and cold items and store them
independently. This is precisely the approach implemented by
the Cold Filter in Stage 2.

C. Cold Filter (Stage 2)
Figure 7 illustrates the structure of the Cold Filter. It consists

of several arrays (two in this paper), L1 and L2, where each
cell in the arrays comprises a persistence counter and an on-off
flag. When an item e′ arrives, it is first hashed into multiple
cells in L1 (two in the example shown). We adopt an update
strategy similar to the CU Sketch [50]: among the hashed cells

Algorithm 2: Insert Stage2(e) ▷ Cold Filter
Input: An item e, buckets in L1, L2 with persistence

counters per and status flags flag
Output: Insertion in Stage 2

1 v1 = min1≤i≤d1
L1[i][hi(e)].per;

2 if v1 < ∆1 then
3 for i from 1→ d1 do
4 b1 ← L1[i][hi(e)];
5 if b1.per = v1 && b1.f lag = on then
6 b1.per ← b1.per + 1;
7 b1.f lag ← off;
8 end
9 end

10 return true; ▷ Successful insertion in L1

11 end
12 v2 = min1≤i≤d2L2[i][gi(e)].per;
13 if v2 < ∆2 then
14 for i from 1→ d2 do
15 b2 ← L2[i][gi(e)];
16 if b2.per = v2 && b2.f lag = on then
17 b2.per ← b2.per + 1;
18 b2.f lag ← off;
19 end
20 end
21 return true; ▷ Successful insertion in L2

22 end
23 return false;

Per: persistence
Flag: on-off bit

Stage 2

𝒆′ 𝒆′

per flag

Cold Filter

Bucket 𝑩′𝒊,𝒋

n 𝒄ells m cells

15,off 1,on

If per>

If per >

... 𝒈(⋅)𝒉(⋅)

15,on

1,on

...

100,off

69,off
...

7,off
𝑯(⋅)

Stage 3

Hot
Part

𝑳𝟏 𝑳𝟐

𝒆′
Δ𝟐

Δ𝟏

Fig. 7: Data structure of the Cold Filter.

with the flag set to on, the one with the smallest persistence
value is selected. The processing follows two cases:

1) If the persistence value does not exceed a threshold ∆1,
the persistence value is incremented by 1, and the flag
is set to off.

2) If the persistence value exceeds ∆1, e′ is inserted into
L2 using a similar strategy as for L1.

When inserting into L2, if the minimum persistence value
of the cells mapped by e′ in L2 exceeds another threshold
∆2, e′ is considered a hot item with high persistence. It is
then inserted into the subsequent Hot Part, as described in the
previous subsection. This design retains cold items within L1

and L2, while only hot items proceed to the Hot Part. This
separation effectively addresses the limitations mentioned in
the previous subsection by clearly distinguishing between cold
and hot items. The pseudocode for this process is presented
in Algorithm 2.

Algorithm 3: Insert Stage1(e) ▷ Burst Filter
Input: An item e, cells in bucket array B containing

IDs keys
Output: Insertion success in Stage 1

1 for cell ∈ Bf(e) do
2 if cell.id = null || cell.id = e.id then
3 cell.id = e.id;
4 return true;
5 end
6 end
7 return false;

• Limitations: Although the proposed design addresses the
separation of hot and cold items, and improves the accuracy
of persistence estimation, it introduces a new challenge: addi-
tional hash computations are required to map items into the
corresponding cells of L1 and L2. Experiments (as shown in
Section V) indicate that using two hash functions for each
layer yields optimal results. In contrast, the Hot Part only
requires a single hash computation. Consequently, introducing
the Cold Filter greatly reduces the algorithm’s throughput.

To address this issue, we leverage a unique property of
persistence estimation: each cell in each array (Ln) can
be updated at most once within a single window. This
means that for a given item e, only its first occurrence in
a window is meaningful (as it updates the cells it maps to),
while subsequent occurrences have no effect. Thus, we can
skip hash computations for e’s repeated appearances.

To implement this optimization, we introduce an auxiliary
data structure to record the set of items observed within
the current window. At the end of the window, we iterate
through this set and insert each item into the Cold Filter. This
mechanism is implemented by the Stage 1 Burst Filter, which
effectively mitigates the throughput reduction caused by the
Cold Filter.
• False Positive Control: The Cold Filter behaves like a

Bloom Filter, producing false positives but no false negatives.
To minimize FPR (False Positive Rate) while maintaining
system performance, memory is allocated between the Cold
Filter and Hot Part in a balanced ratio (e.g., 3:2), reducing
collisions and trying to avoid cold items are misclassified
as hot. Experimental results in Section V.C confirm that the
3:2 memory ratio maintains an FPR below 0.1%, balancing
throughput and accuracy across diverse data distributions.

D. Burst Filter (Stage 1)

𝒆

Stage 1 Burst Filter

Bucket 𝑩𝒊

...𝑘𝑒𝑦1 𝑘𝑒𝑦𝑘...𝐼𝐷𝑎 𝐼𝐷𝑏

𝒇(⋅)
...

𝐼𝐷𝑑

𝐼𝐷𝑔 ...

...

𝐼𝐷𝑓 𝐼𝐷𝑠 ...
w Buckets

𝐼𝐷ℎ

𝐼𝐷𝑡𝐼𝐷𝑐

𝐼𝐷𝑒

...

...

...

Key: ID item

γ 𝒄𝒆𝒍𝒍𝒔

Fig. 8: Data structure of the Burst Filter.

Algorithm 4: Insert(e)
Input: Item e

1 if Insert Stage1(e) then
2 return;
3 end
4 if Insert Stage2(e) then
5 return;
6 end
7 Insert Stage3(e);
8 return;

Figure 8 illustrates the structure of the Burst Filter. It
consists of w buckets, each containing γ cells, where each
cell stores the ID of an item. When an item e arrives, it is
hashed into the f(e)-th bucket B[f(e)] using the hash function
f(·). The bucket is then traversed, and the following cases are
handled:

1) If e is already in the bucket, no action is taken.
2) If e is not in the bucket and there is an empty cell, e is

inserted into the empty cell.
3) If e is not in the bucket and there are no empty cells, e

is inserted into the Cold Filter in Stage 2.
At the end of each time window, all items in the buckets

are iterated over and inserted into the Stage 2 Cold Filter. The
Burst Filter is then cleared by emptying all buckets.
• Example Explanation: To demonstrate why adding an
additional Burst Filter layer can reduce the number of hash
computations to increase the throughput, we present an illus-
trative example. As shown on the left side of Figure 9, consider
only the L1 layer of the Cold Filter, which uses two hash
functions, h1 and h2. Suppose an item e9 arrives 100 times
within the current window. This would require 100× 2 = 200
hash computations.

With the Burst Filter added, as shown on the right side of
Figure 9, we first compute the hash function f(·) 100 times to
insert e9 into the Burst Filter. At the end of the window, when
traversing the items in the Burst Filter, e9 is inserted into the
Cold Filter, requiring only 2 additional hash computations (for
h1 and h2). This results in a total of 102 hash computations,
saving 200 − 102 = 98 hash computations. The difference
becomes even more significant when the Cold Filter employs
more hash functions.

Cold
Filter

𝒆𝟗

New per-window start:

𝟏. 𝒆𝟗 Total hashes=100 X 2=200

2. All items in cold filter

per-window over :

Without Stage 1

(a) Without Stage 1

𝒇 × 𝟏𝟎𝟎

𝒉𝟐

Cold
Filter

𝒉𝟏
𝒆𝟗

𝟏. 𝒆𝟗 Total hashes=100+2=102

2. Stage 1 items into cold filter

With Stage 1

New per-window start:

per-window over :

Burst
Filter

(b) With Stage 1

Fig. 9: Burst Filter for hash reduction.

E. Complete Insertion of Hypersistent Sketch

The complete insertion workflow of the Hypersistent Sketch
spans its three stages, as described in Figure 5 and the
preceding sections. The process proceeds from Stage 1 to
Stage 3 as follows: When an item e arrives, it is first inserted
into the Burst Filter. At the end of each time window, all
items stored in the Burst Filter are retrieved and sequentially
inserted into the Cold Filter. If an item’s persistence estimate
exceeds the threshold ∆1 +∆2 in the Cold Filter (indicating
an overflow), it is inserted into the Hot Part. The pseudocode
for this process is presented in Algorithm 4.

F. Persistence Query

After the data stream has ended, the persistence of an item
e in the Hypersistent Sketch is queried through the Cold Filter
and Hot Part, following these steps:

1) Query L1 of the Cold Filter: Hash e into multiple cells of
L1 using the corresponding hash functions, and record
the minimum persistence value v1 among these cells. If
v1 < ∆1, return v1.

2) Otherwise, if v1 ≥ ∆1, proceed to L2: Hash e into multi-
ple cells of L2 using the corresponding hash functions,
and record the minimum persistence value v2 among
these cells. If v2 < ∆2, return ∆1 + v2.

3) Otherwise, if v2 ≥ ∆2, query the Hot Part: Retrieve
the value v3 of e in the Hot Part (via collision-free ID
matching), and return ∆1 +∆2 + v3.

This staged approach achieves O(1) average query latency
by: (1) filtering 98.7% cold items at L1 (per our analysis
in Section IV.B), and (2) It can be expected that if e is
a cold item, its persistence is determined within L1. If its
persistence is slightly larger, it will be handled in L2. Only
when e is a hot item will it be processed in the Hot Part,
(3) The Hot Part resolves hash collisions deterministically for
items with v2 ≥ ∆2 through full ID storage, which stores the
full IDs of items. This avoids hash collisions for hot items
and supports tasks such as persistent item detection, which
require complete item IDs. We support two query modes:
After-window querying returns fully updated persistence
values, reflecting all insertions within the window; In-window
querying requires an additional hash check for items still
being processed in the Burst Filter (Stage 1). Since the vast
majority of flows are handled at the L1 layer, only a small
fraction of flows enter the L2 layer, and even fewer hot flows
enter the Hot Part. As a result, both query modes maintain
O(1) average query latency. The pseudocode is presented in
Algorithm 5.

G. A Running Example

Figure 10 illustrates a running example of the Hypersistent
Sketch. The parameters for each layer are as follows:

• Burst Filter: Uses a single hash function to locate a
bucket, with each bucket containing 4 entries.

• Cold Filter: For L1 layer, we use 2 hash functions, with a
threshold ∆1 = 15. For L2 layer, we use 2 hash functions,
with a threshold ∆2 = 100.

Algorithm 5: Query(e)
Input: Item e, Item number packet seq, Window

length window len
Output: The persistence of e

1 ret← 0;
2 if packet seq % window len ̸= 0 then
3 for cell ∈ Bf(e) do
4 if cell.id = e.id then
5 ret← 1; ▷ find out whether the current

item exists in the Brust Filter.
6 end
7 endfor
8 end
9 v1← min1≤i≤d1

(L1[i][hi(e)]);
10 if v1 < ∆1 then
11 return ret+ v1; ▷ L1 of Cold Filter
12 end
13 ret← ret+ v1;
14 v2 = min1≤i≤d2

(L2[i][gi(e)]);
15 if v2 < ∆2 then
16 return ret+ v2; ▷ L2 of Cold Filter
17 end
18 ret← ret+ v2;
19 bucket← L3[H(e)];
20 for entry ∈ bucket do
21 if entry.key = e then
22 ret← ret+ entry.per; ▷ Hot Part
23 end
24 endfor
25 return ret;

• Hot Part: Uses a single hash function to locate a bucket,
with each bucket containing 3 cells.

Examples of insertion into each layer are shown below.
1) Inserting into Burst Filter: Note that every item will first

enter the Burst Filter.
• Case 1: Insert e1. We find that the corresponding bucket

does not contain e1 but has an empty cell, so e1 is placed
into the bucket.

• Case 2: Insert e2. We find that e2 already exists in the
corresponding bucket, so no action is taken.

• Case 3: Insert e3. We find that the corresponding bucket
does not contain e3, and the bucket is full, so e3 is
inserted into the Cold Filter instead.

2) Inserting into the Cold Filter: Note that items enter the
Cold Filter only in two cases: (1) when the Burst Filter’s
bucket is full within the window and cannot accommodate
more items, and (2) after the window ends, when items from
the Burst Filter are transferred to the Cold Filter.

• Case 4: e3 is mapped to two cells in L1. The smaller
of the two cells is found, and since its flag is “on,” the
counter is incremented, and the flag is set to “off.”

• Case 5: e7 is mapped to two cells in L1. Since both flags
are “off,” no action is taken.

𝑒𝑚𝑝𝑡𝑦

𝑒9, 51, 𝑜𝑛𝑒9

𝑒12

𝑒1

𝑒3 𝑒6

𝑒2

𝐼𝐷𝑒22

𝑒8.....

Update

Update

Static

Buckets all full

𝑒𝑚𝑝𝑡𝑦 𝐼𝐷𝑒28 𝐼𝐷𝑒2

𝐼𝐷𝑒1

....

Stage 1 Stage 2 Stage 3

𝑯(⋅)

𝒇(⋅)

𝒇(⋅)

𝒇(⋅)

𝐼𝐷𝑒24 𝐼𝐷𝑒31𝐼𝐷𝑒19

Replace

𝑒7

𝒈(⋅)

Bucket 1

Bucket 2

If PR==0

2,off

8,off

Threshold Δ𝟏 : 15

Threshold Δ𝟐 : 100

.....

.....

𝑯(⋅)

Static

𝑒6𝑒3

𝑒8
𝒆𝟖 all Per > Δ𝟐

Update

Update
Replace

𝒈(⋅)
𝒆𝟔

𝑒9, 52, off

𝑒12, 29, off

𝑳𝟏

𝑳𝟐

𝑳𝟑

𝑒18, 75, 𝑜𝑛

𝑒19, 28, off

𝑒16, 91, 𝑜𝑛

22,off

2, off

8,off

𝑒10, 66, off
15,off

15,off

1, o𝑛

14, 𝑜𝑛

5,off

7, o𝑛

100, o𝑛

100,off

𝑒8, 1, off

10, 𝑜𝑛

Fig. 10: An example of Hypersistent Sketch.

• Case 6: e6 is mapped to two cells in L1. Since the mini-
mum value of these cells reaches the threshold ∆1 = 15,
e6 is moved to L2. Similarly, the two cells in L2 are
found, and the smallest is updated.

• Case 7: e8 (assuming ∆1 is reached in L1) is mapped
to two cells in L2. Since the threshold ∆2 = 100 is met,
it suggests that e8’s persistence may exceed ∆1 +∆2 =
115. Thus, e8 is considered a hot item and is inserted
into the Hot Part.

3) Inserting into the Hot Part: Note that only items with
persistence greater than the Cold Filter’s combined threshold
∆1 +∆2 are inserted into the Hot Part.

• Case 8: Insert e8. We find that e8 is not present in the
bucket, but there is an empty slot, so e8 is inserted into
the empty slot.

• Case 9: Insert e9. We find that e9 already exists in its
corresponding bucket, so we update its counter and flag.

• Case 10: Insert e12. We find that e12 is not in its bucket,
and the bucket has no available slots. We locate the
item with the smallest persistence in the bucket, e19,
and replace it with probability 1

28+1 . If the replacement
is successful, we insert e12 and continue updating its
counter and flag. If the replacement fails, we return.

H. SIMD Optimization

In this section, we optimize the Burst Filter (Stage 1) for
inserting items by exploiting Single Instruction Multiple Data
(SIMD) instructions, as most insertions within a window are
processed in the Burst Filter. SIMD instructions enable data
parallelism through vectorization, which effectively acceler-
ates sequential access operations. Our key optimization targets
the item lookup process in the Burst Filter. Traditionally, in-
serting an item ei requires checking whether it exists in bucket
B[f(ei)] by sequentially comparing it with each stored entry,
which becomes inefficient when multiple items are present.
SIMD-based parallel comparisons address this inefficiency.
By utilizing these 128-bit SIMD operations, we reduce the
number of comparison operations required, accelerating the
bucket scanning process by approximately four times com-
pared to traditional sequential scanning. We also demonstrate
how SIMD instructions enhance the performance of the Burst

Filter. As described in Section III-D, to insert an item ei,
the Burst Filter first checks whether it is stored in B[f(ei)].
Specifically, this involves sequentially comparing the ID of
ei with the IDs stored in B[f(ei)]. By leveraging SIMD
instructions, the Burst Filter can match item IDs in parallel.
For example, assume the ID length is 4 bytes, and each bucket
stores 4 items. The pseudo-code for the insertion process,
implemented using AVX2 SIMD instructions, is presented in
Algorithm 6.

Algorithm 6: Scanning a bucket with SIMD
Input: Item e. Pointer p is the start of bucket entries
Output: Index of the matched entry or -1 (no found)

1 m128i item = mm set1 epi32(e);
2 m128i * keys = (m128i *) p;
3 ▷ Step 1: Duplicate item e into a 128-bit register
4 m128i a comp = mm cmpeq epi32(item, keys[0]);
5 m128i b comp = mm cmpeq epi32(item, keys[1]);
6 m128i c comp = mm cmpeq epi32(item, keys[2]);
7 m128i d comp = mm cmpeq epi32(item, keys[3]);
8 ▷ Step 2: Compare item with four bucket entries in

parallel
9 a comp = mm packs epi32(a comp, b comp);

10 c comp = mm packs epi32(c comp, d comp);
11 a comp = mm packs epi32(a comp, c comp);
12 ▷ Step 3: Pack comparison results together
13 matched = mm movemask epi8(a comp);
14 ▷ Step 4: Convert SIMD comparison results to scalar

mask
15 return matched ̸= 0 ? TZCNT(matched) : -1;
16 ▷ Return index of first match or -1 if no match

IV. MATHEMATICAL ANALYSIS

Due to space limitations, we place the detailed proofs of the
following theorems on the Website [1] and the GitHub [2].

A. Burst Filter Speedup

Theorem IV.1. Assume that in multiple time windows T , there
are nBF distinct items, and the total number of items is EBF .
The Burst Filter contains w buckets, with each bucket having

γ cells. Let PBur denote the probability of the Burst Filter
capturing the data stream. We have PBur → 1.

We conclude that in practice, there is a substantial
volume of data in data streams, allowing the Burst Filter
to capture nearly all data effectively.

B. Persistence Estimation
1) Error Bound:

Theorem IV.2. Let p̂i be the estimated persistence of our
method. We have

pi ≤ p̂i ≤ T. (1)

In summary, we have pi ≤ p̂i ≤ T . This result
indicates that the estimated persistence provided is within
a reasonable range and will not introduce significant
deviation when utilized.

Theorem IV.3. Let n, m and L be the number of buckets in
layer L1, L2 and L3, l = e

ϵ and d = ln
(
1
δ

)
. For small data

streams, we obtain

P (p̂i ⩽ pi + ϵ∥p∥1) ⩾ 1− δ. (2)

For medium data streams, where ε = e
n×m and δ = e−d1−d2 ,

it follows that

P(p̂i ≤ pi + ε ∥p∥1 × ∥p∥
1
1) ≥ 1− δ. (3)

For large data streams, ε1 = e
n×m×L and δ = e−d1−d2−d3 ,

we conclude that

P(p̂i ≤ pi + ε1 ∥p∥1 × ∥p∥
1
1 × ∥p∥

2
1) ≥ 1− δ. (4)

It is evident that we can obtain the estimated persistence
in a finite number of iterations and calculations. The time
complexity of our estimation method is O(ln(1δ)), while
the space complexity is O

(
1
ε ln(

1
δ)
)
.

2) Comparison with Related Work:

Theorem IV.4. Let p̂OO
i be the estimated persistence of the

On-Off Sketch. Under the same memory conditions, we filter
the entire data stream by assigning a different number of
counters and di for small, medium, and large data streams.
For simplicity, we use the same names for the hash functions
in the On-Off Sketch as in our method, even though they have
different numbers of counters. Let ∆OO

j pi = Cj [hj(ei)]− pi,
where pi = min1≤j≤d (Cj [hj(ei)]), and d represents the
number of hash functions in the On-Off Sketch. There is:

E
(
∆OO

j pi
)
> E (∆jpi) .

The above inequalities indicate that our method is
superior to the On-Off Sketch.

C. Finding Persistent Items
Theorem IV.5. Let p̂i = B[h1(ei)][ei] and denote the On-Off
Sketch estimate as p̂OO

i , where B[i] is the ith bucket. We have
the following inequality:

pi ≤ p̂i ≤ p̂OO
i ≤ T. (5)

Therefore, our method outperforms the On-Off Sketch
in finding persistent items.

D. Skewness-Aware and Threshold Sensitivity Analysis

Theorem IV.6: Skewness-Aware Error Bound. Assume
the persistence follows a Zipf distribution with parameter s,
i.e., the persistence of the i-th most frequent item is:

pi =
1

isH
(s)
N

, where H
(s)
N =

N∑
k=1

1

ks
.

The expected error upper bound of the Hypersistent Sketch
satisfies:

E[p̂i − pi] ≤
H

(s)
N

n
+

H
(s−1)
N

m
,

where n and m are the number of counters in L1 and L2

layers of the Cold Filter, respectively.
This indicates that our method is adaptable to data with

different skews. When the skewness is large, our method
performs better; when the skewness is not large, the data
distribution is relatively uniform, and our method is not
inferior to the comparison method.

Theorem IV.7: Threshold Sensitivity and Pareto Opti-
mality. Let the Cold Filter thresholds be parameterized as:

∆1 = k1 ·
log n

log logn
, ∆2 = k2 ·∆1 = k1k2 ·

log n

log logn
.

where k1, k2 are tunable constants. The memory-error trade-
off satisfies:

Memory Efficiency ∝ 1

k1k2
, Relative Error ∝

√
k1

n1/2
+

3
√
k2

m1/3
.

Pareto optimality is achieved when:

k1 = Θ

(√
n

log n

)
, k2 = Θ

(
3

√
m

logm

)
.

This ratio automatically adapts to data scale while maintain-
ing near-optimal performance. The theorem shows that our
method behaves differently for different thresholds and
gives the memory allocation and the relationship between
error and threshold parameters. In addition, the Pareto
optimality of the theoretical threshold is given at the end,
which can guide us in setting the corresponding threshold
parameters in the experiment.

E. Time and Space Complexity Analysis

The overall insertion and query time complexity of Hy-
persistent Sketch is determined by the operations performed
in each stage. Insertion complexities of Burst Filter, Cold
Filter (L1, L2) and Hot Part are O(1), O(d1) and O(1)
respectively. Query complexities of Burst Filter, Cold Filter
(L1, L2) and Hot Part are O(γ), O(d1 + d2) and O(1)
respectively.

The space complexity of Hypersistent Sketch is determined
by memory allocation across the three stages. Space complex-
ities of Burst Filter, Cold Filter (L1, L2) and Hot Part are
O(wγ), O(d1w + d2w) and O(λβ) respectively.

Overall, the time complexity of the Burst Filter, Cold
Filter, and Hot Filter in our method is O(d1 + d2) + O(γ).
Hypersistent Sketch divides the available memory into three

parts (M1 for Burst Filter, M2 for Cold Filter, M3 for Hot
Filter), so the total space complexity is:

O(M1+M2+M3) (which can be combined into O(M)).

In stream processing applications, M is usually a fixed
amount set in advance based on accuracy requirements or
hardware constraints, and it does not grow linearly with
the data stream size N . Therefore, it is often represented
as O(M).

Theorem IV.8 Comparison of computational efficiency
Consider a stream of data items, with the total number of
items denoted as M . When only the Cold Filter and Hot
Part are available, data is processed by the hash function
2m times upon reaching the Cold Filter. Next, data with
persistence exceeding the threshold D1+D2 is reprocessed in
the Hot Part. With the introduction of the Burst Filter, data
undergoes m hash function calculations through the Burst
Filter. Subsequently, data whose persistence exceeds D1 is
processed twice into the Cold Filter. If the persistence further
exceeds D1+D2, one hash is performed for the Hot Part. We
will compare the two methods sequentially under different data
distributions.

Under various data distributions, such as uniform distribu-
tion, exponential distribution and Zipf distribution, incorporat-
ing a Burst Filter significantly increases computing efficiency
by 2×.

V. EXPERIMENTAL RESULTS

This section presents experimental results, including exper-
imental setup (V-A), performance on persistence estimation
(V-B), and finding persistent items (V-C). Finally, we explore
throughput enhancement using SIMD instructions (V-D).
A. Experimental Setup

1) Implementation:
Experiments were conducted on a six-core Intel i5-8400

(2.80GHz, 16GB DRAM) with 32KB L1, 256KB L2, and
9MB shared L3 cache, ensuring sufficient computational re-
sources.

2) Metrics:
Insert Throughput: N/T million operations per second

(Mops), where N is the total number of insertions and T
is the total time taken. Median values are reported over five
experimental runs.

Query Throughput: Q/T million queries per second
(Mqps), where Q is the total number of queries and T is
the total time taken. Median values are reported over five
experimental runs.

AAE (Average Absolute Error): 1
|Φ|

∑
ei∈Φ |P (ei) −

P̂ (ei)|, where P (ei) is the real persistence of item ei, P̂ (ei)
is the estimated persistence, and Φ is the query set.

ARE (Average Relative Error): 1
|Φ|

∑
ei∈Φ

|P (ei)−P̂ (ei)|
P (ei)

,
evaluating the error rate of estimated persistence.

F1-Score: The F1-Score is a balanced metric for detecting
persistent items, combining precision and recall to mini-
mize both false positives and false negatives. F1-Score =

2·TP
2·TP+FP+FN , where TP (True Positives) are correctly identified

persistent items, FP (False Positives) are non-persistent items
misclassified as persistent, and FN (False Negatives) are
persistent items missed by the model.

FNR (False Negative Rate): The FNR quantifies the
proportion of persistent items that are not identified: FNR =

FN
FN+TP , where FN (False Negatives) refers to persistent items
that are not reported, and TP (True Positives) represents
persistent items correctly identified.

FPR (False Positive Rate): The FPR measures the propor-
tion of non-persistent items that are incorrectly identified as
persistent: FPR = FP

FP+TN , where FP (False Positives) refers
to non-persistent items incorrectly identified as persistent, and
TN (True Negatives) represents non-persistent items correctly
identified.

3) Dataset:
CAIDA Dataset:(1) The CAIDA trace from the Equinix-

Chicago monitor includes 109,534 items (13 bytes per packet).
The primary trace lasts for 5 seconds (162K items, 2.49M
packets, max item: 17K), while a 2-minute trace is used for
large-scale evaluation (1.71M items, 53.72M packets, max
item: 0.93M). Most items have a persistence below 50, and
each item ID is 4 bytes. (2) Big CAIDA Dataset: This dataset
consists of anonymous IP communication data collected by
CAIDA, covering DDoS attack traffic, TCP/UDP probe traffic,
and BGP monitoring traffic. These traffic types show varying
traffic size distributions, with TCP traffic accounting for 44%
to 65%. The dataset contains 30 million items and 543,996
distinct items, ensuring that the throughput evaluation reflects
real-world use cases.

MAWI Dataset: It is collected by the MAWI Working
Group [51], includes a 15-minute trace from January 1, 2022,
containing 8.35M items. It comprises 2M flows with 200,471
distinct types (13 bytes per packet), with 266 hits and 125
flows exceeding the persistence threshold; most flows have
persistence below 50.

Campus Dataset: It consists of 10 IP tracking traces from
campus gateways, was used. A 1 million item subset includes
10M flows with 259,948 distinct types (13 bytes per packet),
with 1,333 hits and 677 flows exceeding the persistence
threshold. Most flows exhibit persistence below 50.

Synthetic datasets: Generated using the Web Polygraph
tool, these datasets follow Zipf distributions with skewness
values ranging from 1.5 to 2.5. Comprising approximately
9.8 million network packets, the number of distinct packet
types varies with skewness: around 307,795 types for Zipf
1.5, 29,412 types for Zipf 2.0, and 6,552 types for Zipf 2.5.
They enable performance evaluation across diverse distribution
scenarios.

4) Methodology:
Hypersistent Sketch (HS) was implemented in C++ using

BOBHash, with distinct random seeds per hash function, and
regenerated each time window for probabilistic randomness.
For persistence estimation, HS was compared with On-Off
Sketch (OO) [52], WavingSketch (WS) [53], CM Sketch (CM)
[48], focusing on AAE, ARE. Tight Sketch (TS) [54] and
P-Sketch (PS) [55], while recent advancements in the field.

OO WS CM Ours

10002000300040005000
Window

10 1

100

101

102

AA
E

(a) CAIDA

10002000300040005000
Window

10 1

100

101

102

AA
E

(b) MAWI

1000 2000 3000 4000 5000
Window

100

101

102

AA
E

(c) Campus

1000 2000 3000 4000 5000
Window

100

101

102

103

AA
E

(d) Big CAIDA

1000 2000 3000 4000 5000
Window

100

101

102

AA
E

(e) Zipf 1.5

10002000300040005000
Window

10 2

10 1

100

101

AA
E

(f) Zipf 2.0

Fig. 11: AAE on persistence estimation vs. window.

100 200 300 400 500
Memory (KB)

10 1
100
101
102
103

AA
E

(a) CAIDA

100 200 300 400 500
Memory (KB)

10 1
100
101
102
103

AA
E

(b) MAWI

100 200 300 400 500
Memory (KB)

100

102

104

AA
E

(c) Campus

100 200 300 400 500
Memory (KB)

100

102

104

AA
E

(d) Big CAIDA

100 200 300 400 500
Memory (KB)

100

102

104

AA
E

(e) Zipf 1.5

100 200 300 400 500
Memory (KB)

10 2

100

102

AA
E

(f) Zipf 2.0

Fig. 12: AAE on persistence estimation vs. memory.

10002000300040005000
Window

10 1

100

101

102

AR
E

(a) CAIDA

10002000300040005000
Window

10 1

100

101

102

AR
E

(b) MAWI

1000 2000 3000 4000 5000
Window

100

101

102

AR
E

(c) Campus

1000 2000 3000 4000 5000
Window

100

101

102

103

AR
E

(d) Big CAIDA

1000 2000 3000 4000 5000
Window

100

101

102

AR
E

(e) Zipf 1.5

10002000300040005000
Window

10 2

10 1

100

101

AR
E

(f) Zipf 2.0

Fig. 13: ARE on persistence estimation vs. window.

100 200 300 400 500
Memory (KB)

10 1
100
101
102
103

AR
E

(a) CAIDA

100 200 300 400 500
Memory (KB)

10 1
100
101
102
103

AR
E

(b) MAWI

100 200 300 400 500
Memory (KB)

100

102

104

AR
E

(c) Campus

100 200 300 400 500
Memory (KB)

100

102

104

AR
E

(d) Big CAIDA

100 200 300 400 500
Memory (KB)

100

101

102

103

AR
E

(e) Zipf 1.5

100 200 300 400 500
Memory (KB)

10 2

100

102

AR
E

(f) Zipf 2.0

Fig. 14: ARE on persistence estimation vs. memory.

However, they were not included in the comparison because
they do not maintain persistence records in the sketch, which
makes it impossible for them to estimate the persistence
of entire items. Evaluations were conducted under varying
memory sizes (50-500 KB) with a persistence window of
3000, and with a fixed memory size of 500 KB while varying
window sizes from 500 to 5000. For CM and WS, half of the
memory was allocated to the Bloom Filter [49] to reduce false
positives. OO used a three-layer structure as per the original
implementation. In HS, 30% of memory was assigned to the
Hot Part, the cold part had a 17:3 memory ratio, and the Burst
Filter size was set to window size/100 KB.

For persistent item detection, HS was compared with Small-
Space (SS) [56], WavingSketch (WS) [53], On-Off Sketch
(OO) [52], and state-of-the-art works based on On-Off Sketch,
including Tight Sketch (TS) [54] and P-Sketch (PS) [55], using
F1-Score, ARE, FNR, and FPR. Evaluations were performed
with a persistence window of 1500 and memory ranging from
10 KB to 50 KB. CM and WS allocated half of the memory
to the Bloom Filter to ensure a low FPR, while OO, PS and
TS used a three-layer structure. In HS, 40% of memory was
used for the Hot Part, the Burst Filter was set to 1 KB, and
the cold part maintained a 17:3 memory ratio.

We use their open-source codes to compare the algorithms.
The source code of Hypersistent Sketch can be downloaded
from the Website [1], as well as the GitHub [2].

B. Persistence Estimation

AAE: Figures 11, 12 illustrate the changes in AAE with
varying window sizes and memory capacities. From Figure 11,
we observe that the AAE of all algorithms remains relatively
unaffected by window size, demonstrating a unique property
of persistence estimation. Among the four algorithms, our
Hypersistent Sketch (HS) consistently achieves the lowest
AAE across all datasets, window sizes memory capacities and
Zipf distributions. On average, HS outperforms WS by 0.7
orders of magnitude, OO by 1 order of magnitude, and CM
by 1.5 orders of magnitude. In Figure 12, the AAE of all
algorithms decreases as memory size increases. HS maintains
its lead, achieving an average improvement of 0.8, 1, and 1.5
orders of magnitude over WS, OO, and CM, respectively, at a
memory size of 500KB. Particularly in Zipf 1.5 and Zipf 2.0
distributions, AAE is reduced by 1.5 to 2 orders of magnitude
compared to OO, WS, CM.

ARE: Figures 14 and 13 present the changes in ARE with
varying window sizes and memory capacities. HS achieves

OO SS TS PS WS Ours

10 20 30 40 50
Memory (KB)

0.0
0.2
0.4
0.6
0.8
1.0

F1
 S

co
re

(a) CAIDA

10 20 30 40 50
Memory (KB)

0.0
0.2
0.4
0.6
0.8
1.0

F1
 S

co
re

(b) MAWI

10 20 30 40 50
Memory (KB)

0.0
0.2
0.4
0.6
0.8
1.0

F1
 S

co
re

(c) Campus

10 20 30 40 50
Memory (KB)

0.0
0.2
0.4
0.6
0.8
1.0

F1
 S

co
re

(d) Big CAIDA

10 20 30 40 50
Memory (KB)

0.0
0.2
0.4
0.6
0.8
1.0

F1
 S

co
re

(e) Zipf 1.5

10 20 30 40 50
Memory (KB)

0.0
0.2
0.4
0.6
0.8
1.0

F1
 S

co
re

(f) Zipf 2.0

Fig. 15: F1-score on finding persistent items.

10 20 30 40 50
Memory (KB)

10 3
10 2
10 1
100

AR
E

(a) CAIDA

10 20 30 40 50
Memory (KB)

10 4

10 2

100

AR
E

(b) MAWI

10 20 30 40 50
Memory (KB)

10 4

10 2

100

AR
E

(c) Campus

10 20 30 40 50
Memory (KB)

10 2

100

AR
E

(d) Big CAIDA

10 20 30 40 50
Memory (KB)

10 3

100

AR
E

(e) Zipf 1.5

10 20 30 40 50
Memory (KB)

10 3

100

AR
E

(f) Zipf 2.0

Fig. 16: ARE on finding persistent items.

10 20 30 40 50
Memory (KB)

10 4

10 2

100

FN
R

(a) CAIDA

10 20 30 40 50
Memory (KB)

10 4

10 2

100

FN
R

(b) MAWI

10 20 30 40 50
Memory (KB)

10 4

10 2

100

FN
R

(c) Campus

10 20 30 40 50
Memory (KB)

10 2

10 1

100

FN
R

(d) Big CAIDA

10 20 30 40 50
Memory (KB)

10 4

10 2

100

FN
R

(e) Zipf 1.5

10 20 30 40 50
Memory (KB)

10 4

10 2

100

FN
R

(f) Zipf 2.0

Fig. 17: FNR on finding persistent items.

10 20 30 40 50
Memory (KB)

10 4

10 1

FP
R

(a) CAIDA

10 20 30 40 50
Memory (KB)

10 5

10 3

FP
R

(b) MAWI

10 20 30 40 50
Memory (KB)

10 5

10 3

FP
R

(c) Campus

10 20 30 40 50
Memory (KB)

10 5

10 3

10 1

FP
R

(d) Big CAIDA

10 20 30 40 50
Memory (KB)

10 4

10 1

FP
R

(e) Zipf 1.5

10 20 30 40 50
Memory (KB)

10 4

10 1

FP
R

(f) Zipf 2.0

Fig. 18: FPR on finding persistent items.

the lowest ARE on the Big CAIDA dataset, consistent with
the trends observed for AAE. and consistently outperforms
OO, WS, and CM across all Zipf distributions. In Zipf 1.5
and Zipf 2.0, HS achieves ARE reductions by 1.5 to 2
orders of magnitude compared to all other algorithms. These
error analysis experiments demonstrate the effectiveness of
Hypersistent Sketch in improving accuracy by introducing the
Cold Filter, which efficiently separates cold and hot items,
thereby enhancing persistence estimation accuracy.

C. Finding Persistent Items
F1-score: Figure 15 presents the F1-score performance in

finding persistent items under varying memory capacities. As
memory increases from 10 KB to 50 KB, HS consistently
achieves an F1-score close to 1.0 across all datasets. With only
10 KB of memory, HS’s F1-score surpasses those of WS by
1.9×, TS by 1.5×, PS by 1.5×, OO by 2.1×, and SS by 3.3×
on average. In both Zipf 1.5 and Zipf 2.0 distributions, HS
consistently achieves the highest F1-score, approaching 1.0 as
memory increases from 10 KB to 50 KB. At 10KB, HS’s F1-
score surpasses that of TS by 1.3×, PS by 1.2×, OO by 1.5×,
and SS by 2.0×. This improvement is primarily due to HS’s

Cold Filter, which effectively handles a large number of cold
items, while TS and PS lag behind HS in efficiently handling
cold items, thereby resulting in lower performance in finding
persistent items.

ARE: Figure 16 illustrates the changes in ARE with varying
memory capacities in finding persistent items. The figure
shows that while the ARE of all algorithms decreases as
memory increases, HS consistently achieves the lowest ARE.
In the 10 KB to 50 KB memory range, HS outperforms WS
by 0.66, OO by 0.82, SS by 2.83, TS by 1.5, and PS by 1.8,
orders of magnitude, respectively. Particularly under Zipf 1.5
and Zipf 2.0, at 10 KB to 15 KB memory range, HS shows
ARE reduced from around 10−2 to nearly 10−3, significantly
outperforming PS, TS, and WS. HS achieves ARE reductions
by 1.5 to 2 orders of magnitude compared to TS, PS, OO,
WS, and SS.

FNR: Figure 17 presents the FNR in finding persistent
items under varying memory capacities. As memory capacity
increases, Figure 17 shows that HS consistently achieves the
lowest FNR. Specifically, when using 20 KB of memory, HS
reduces the FNR to 10−5, while WS and SS remain at 10−1

OO SS TS PS WS CM Ours_SIMD Ours

100 200 300 400 500
Memory (KB)

20

40

60

80

100

In
se

rt
 T

hr
ou

gh
pu

t
(M

op
s)

(a) CAIDA

100 200 300 400 500
Memory (KB)

50

100

150

In
se

rt
 T

hr
ou

gh
pu

t
(M

op
s)

(b) MAWI

100 200 300 400 500
Memory (KB)

20

30

40

50

60

In
se

rt
 T

hr
ou

gh
pu

t
(M

op
s)

(c) Campus

100 200 300 400 500
Memory (KB)

20

40

60

80

100

In
se

rt
 T

hr
ou

gh
pu

t
(M

op
s)

(d) Big CAIDA

100 200 300 400 500
Memory (KB)

20

40

60

80

100

In
se

rt
 T

hr
ou

gh
pu

t
(M

op
s)

(e) Zipf 1.5

100 200 300 400 500
Memory (KB)

50

100

150

In
se

rt
 T

hr
ou

gh
pu

t
(M

op
s)

(f) Zipf 2.0

Fig. 19: Insert Throughput of Hypersistent Sketch with/without SIMD.

100 200 300 400 500
Memory (KB)

20

30

40

50

Q
ue

ry
 T

hr
ou

gh
pu

t
(M

qp
s)

(a) CAIDA

100 200 300 400 500
Memory (KB)

10

15

20

25

30

Q
ue

ry
 T

hr
ou

gh
pu

t
(M

qp
s)

(b) MAWI

100 200 300 400 500
Memory (KB)

10

15

20

25

Q
ue

ry
 T

hr
ou

gh
pu

t
(M

qp
s)

(c) Campus

100 200 300 400 500
Memory (KB)

10

12

14

16

18

20

Q
ue

ry
 T

hr
ou

gh
pu

t
(M

qp
s)

(d) Big CAIDA

100 200 300 400 500
Memory (KB)

10

15

20

25

Q
ue

ry
 T

hr
ou

gh
pu

t
(M

qp
s)

(e) Zipf 1.5

100 200 300 400 500
Memory (KB)

10

20

30

40

50

Q
ue

ry
 T

hr
ou

gh
pu

t
(M

qp
s)

(f) Zipf 2.0

Fig. 20: Query Throughput of Hypersistent Sketch with/without SIMD.

and 100, respectively. Even with only 10 KB of memory, as
shown in Figure 17, HS maintains the FNR at 10−5, whereas
SS’s,TS’s, and PS’s FNR all exceeds 10−1. Across both Zipf
1.5 and Zipf 2.0 distributions, at 20 KB to 25 KB memory,
HS improves FNR by 1.8 to 2 orders of magnitude compared
to PS and TS, reducing it from around 10−2 to approximately
10−3. OO shows higher FNR than HS, exceeding 10−2.

FPR: Figure 18 shows the FPR in finding persistent items
under varying memory capacities. Figure 18 shows that as
memory capacity increases, the FPR of all algorithms de-
creases, following a trend similar to the FNR, with HS con-
sistently achieving the lowest FPR. With 10 KB of memory,
HS achieves average improvements of 1.67, 2.61, 2.61, 3.11
and 3.93 orders of magnitude over WS, OO, SS, TS, and PS
respectively. In both Zipf 1.5 and Zipf 2.0 distributions, HS’s
FPR follows a similar trend, reducing it from approximately
10−2 to 10−4 across the 10 KB to 25 KB memory range.

D. SIMD Acceleration

SIMD [57] acceleration significantly enhances the perfor-
mance of HS. Without SIMD, inserting an item into a bucket
with 16 entries requires up to 16 comparisons. With SIMD,
entries are grouped into four sets of four, and comparisons
are performed in parallel using a 128-bit vector, reducing
comparisons to just four per insertion.

Insert Throughput: Figure 19 shows that without SIMD,
as memory capacity increases, the throughput of all algorithms
improves, with HS maintaining the highest performance. This
performance is mainly attributed to the Burst Filter preventing
repeated insertions of the same item within a single window by
deferring insertions until the window ends, further optimizing
processing speed. With SIMD acceleration, the insert through-
put of HS increases significantly. For the CAIDA dataset,
throughput increases by 50% (from 60 Mops to 90 Mops).
In the MAWI dataset, it improves by 27% (from 110 Mops
to 140 Mops), and in the Campus dataset, by 22% (from 45

Mops to 55 Mops), and for the Big CAIDA dataset, throughput
increases by 30% (from 60 Mops to 80 Mops). In Zipf 1.5
and 2.0 distributions, HS leads WS, OO, CM, and PS by
approximately 1 order of magnitude, and TS by 2 orders of
magnitude across all memory sizes. SIMD further improves
HS by 0.2 orders of magnitude. In Zipf 1.5, this results in
a 25% performance increase (from 70 Mops to 100 Mops),
while in Zipf 2.0, it leads to a 20% increase (from 100 Mops
to 150 Mops).

Query Throughput: Figure 20 presents that when the data
exhibits a skewed distribution, figures 20(e) and 20(f) illustrate
that the majority of items are processed at the L1 stage in the
Cold Filter (i.e., Stage 2), with only a small fraction entering
the L2 stage, and an even smaller proportion reaching Hot
Part (i.e., Stage 3). Although SIMD acceleration significantly
improves insert throughput, its impact on query throughput is
relatively limited. This is due to the inherently low parallelism
of query operations and fewer items queried, which limits the
effectiveness of SIMD acceleration in queries. These results
demonstrate the effectiveness of SIMD in boosting efficiency,
particularly in high-traffic scenarios, by minimizing redundant
computations.

VI. CONCLUSION

This paper presents Hypersistent Sketch, a novel algo-
rithm that improves persistence estimation in data streams
by optimizing memory efficiency, accuracy, and processing
speed at the same time. Its three-stage design—Burst Filter,
Cold Filter, and Hot Part—efficiently separates cold and hot
items, enabling accurate persistence estimates with optimized
memory use. The Cold Filter removes low-persistence items
to enhance memory efficiency, while the Burst Filter reduces
redundant updates, significantly boosting throughput. Exper-
imental results confirm that Hypersistent Sketch surpasses
the well-known On-Off Sketch in both accuracy and speed,
making it an effective solution for persistence estimation tasks.

REFERENCES

[1] Our Website, https://wenjunli.com/HypersistentSketch.
[2] Our GitHub, https://github.com/wenjunpaper/HypersistentSketch.
[3] T. Yang, H. Zhang, D. Yang, Y. Huang, and X. Li, “Finding significant

items in data streams,” in IEEE ICDE, 2019.
[4] S. Guha, J. Chandrashekar, and N. Taft, “How healthy are today’s

enterprise networks?” in ACM SIGCOMM, 2008.
[5] M. Karppa and R. Pagh, “Hyperlogloglog: Cardinality estimation with

one log more,” in ACM SIGKDD, 2022.
[6] A. Alshamrani, S. Myneni, A. Chowdhary, and D. Huang, “A survey

on advanced persistent threats: Techniques, solutions, challenges, and
research opportunities,” IEEE Communications Surveys & Tutorials,
vol. 21, no. 2, pp. 1851–1877, 2019.

[7] L. Shang, D. Guo, Y. Ji, and Q. Li, “Discovering unknown advanced
persistent threat using shared features mined by neural networks,”
Computer Networks, vol. 189, p. 107937, 2021.

[8] I. Ghafir et al., “Advanced persistent threat attack detection: an
overview,” Int J Adv Comput Netw Secur, vol. 4, no. 4, p. 5054, 2014.

[9] N. Tang, Q. Chen, and P. Mitra, “Graph stream summarization: From
big bang to big crunch,” in ACM SIGMOD, 2016.

[10] M. Li, H. Dai et al., “Seesaw counting filter: A dynamic filtering frame-
work for vulnerable negative keys,” IEEE Transactions on Knowledge
and Data Engineering, vol. 35, no. 12, pp. 12 987–13 001, 2023.

[11] A. Sharma, B. B. Gupta, A. K. Singh, and V. Saraswat, “Advanced
persistent threats (apt): evolution, anatomy, attribution and countermea-
sures,” Journal of Ambient Intelligence and Humanized Computing,
vol. 14, no. 7, pp. 9355–9381, 2023.

[12] Z. Fan, Z. Hu, Y. Wu, J. Guo, W. Liu, and T. Yang, “Pisketch: finding
persistent and infrequent flows,” in ACM SIGCOMM, 2022.

[13] L. Chen, H. Dai, L. Meng, and J. Yu, “Finding needles in a hay stream:
On persistent item lookup in data streams,” Computer Networks, vol.
181, p. 107518, 2020.

[14] H. Dai, M. Li, A. X. Liu, J. Zheng, and G. Chen, “Finding persistent
items in distributed datasets,” IEEE/ACM Transactions on Networking,
vol. 28, no. 1, pp. 1–14, 2019.

[15] H. Dai, M. Shahzad, A. X. Liu, M. Li, Y. Zhong, and G. Chen,
“Identifying and estimating persistent items in data streams,” IEEE/ACM
Transactions on Networking, vol. 26, no. 6, pp. 2429–2442, 2018.

[16] H. Huang, Y.-E. Sun, C. Ma, S. Chen, Y. Zhou, W. Yang, S. Tang,
H. Xu, and Y. Qiao, “An efficient k-persistent spread estimator for
traffic measurement in high-speed networks,” IEEE/ACM Transactions
on Networking, vol. 28, no. 4, pp. 1463–1476, 2020.

[17] Y. Sun, H. Huang, S. Chen, Y. Zhou et al., “Privacy-preserving estima-
tion of k-persistent traffic in vehicular cyber-physical systems,” IEEE
Internet of Things Journal, vol. 6, no. 5, pp. 8296–8309, 2019.

[18] H. Huang, Y.-E. Sun, S. Chen, S. Tang, K. Han, J. Yuan, and W. Yang,
“You can drop but you can’t hide: k-persistent spread estimation in
high-speed networks,” in IEEE INFOCOM, 2018.

[19] I. A. Elgendy, W. Zhang, Y.-C. Tian, and K. Li, “Resource allocation and
computation offloading with data security for mobile edge computing,”
Future Generation Computer Systems, vol. 100, pp. 531–541, 2019.

[20] W. Zhang, I. A. Elgendy, M. Hammad, A. M. Iliyasu, X. Du, M. Guizani,
and A. A. Abd El-Latif, “Secure and optimized load balancing for
multitier iot and edge-cloud computing systems,” IEEE Internet of
Things Journal, vol. 8, no. 10, pp. 8119–8132, 2020.

[21] M. Greenwald and S. Khanna, “Space-efficient online computation of
quantile summaries,” ACM SIGMOD, vol. 30, no. 2, pp. 58–66, 2001.

[22] D. M. Powers, “Applications and explanations of zipf’s law,” in
EMNLP/CoNLL, 1998.

[23] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in ACM SIGCOMM, 2010.

[24] H. Yang et al., “Fedsteg: A federated transfer learning framework for
secure image steganalysis,” IEEE Transactions on Network Science and
Engineering, vol. 8, no. 2, pp. 1084–1094, 2020.

[25] Z. Fan and R. Wang, “Onesketch: A generic and accurate sketch for
data streams,” IEEE Transactions on Knowledge and Data Engineering,
vol. 35, no. 12, pp. 12 887–12 901, 2023.

[26] H. Li, Q. Chen et al., “Stingy sketch: a sketch framework for accurate
and fast frequency estimation,” in ACM VLDB, 2022.

[27] H. Huang, J. Yu et al., “Memory-efficient and flexible detection of heavy
hitters in high-speed networks,” in ACM SIGMOD, 2024.

[28] C. Estan, G. Varghese, and M. Fisk, “Bitmap algorithms for counting
active flows on high speed links,” in ACM IMC, 2003.

[29] L. Wang, G. Luo, K. Yi, and G. Cormode, “Quantiles over data streams:
An experimental study,” in ACM SIGMOD, 2013.

[30] R. Yadav, W. Zhang et al., “Energy-latency tradeoff for dynamic
computation offloading in vehicular fog computing,” IEEE Transactions
on Vehicular Technology, vol. 69, no. 12, pp. 14 198–14 211, 2020.

[31] Q. Zhou, Y.-E. Sun et al., “Cba sketch: A sketching algorithm mining
persistent batches in data streams,” in International Conference on
Algorithms and Architectures for Parallel Processing, 2023.

[32] T. Yang, S. Gao, Z. Sun et al., “Diamond sketch: Accurate per-flow
measurement for big streaming data,” IEEE Transactions on Parallel
and Distributed Systems, vol. 30, no. 12, pp. 2650–2662, 2019.

[33] C. Guo, L. Yuan, D. Xiang et al., “Pingmesh: A large-scale system
for data center network latency measurement and analysis,” in ACM
SIGMCOMM, 2015.

[34] Y. Zhu, N. Kang, J. Cao et al., “Packet-level telemetry in large datacenter
networks,” in ACM SIGMCOMM, 2015.

[35] Y. Zhang, J. Li, and Lei, “On-off sketch: a fast and accurate sketch on
persistence,” Proceedings of the VLDB Endowment, vol. 13, no. 11, pp.
2372–2385, 2020.

[36] H. Dai, M. Shahzad, and A. X. Liu, “Finding persistent items in data
streams,” Proceedings of the VLDB Endowment, vol. 10, no. 4, pp. 289–
300, 2016.

[37] Y. Zhou, T. Yang et al., “Cold filter: A meta-framework for faster and
more accurate stream processing,” in ACM SIGMOD, 2018.

[38] J. Tan and J. Wang, “Detecting advanced persistent threats based on
entropy and support vector machine,” in IEEE ICA3PP, 2018.

[39] Q. Xiao, Y. Qiao, M. Zhen, and S. Chen, “Estimating the persistent
spreads in high-speed networks,” in IEEE ICNP, 2014.

[40] C. Tankard, “Advanced persistent threats and how to monitor and deter
them,” Network security, vol. 2011, no. 8, pp. 16–19, 2011.

[41] S. A. Singh and S. Tirthapura, “Monitoring persistent items in the union
of distributed streams,” Journal of Parallel and Distributed Computing,
vol. 74, no. 11, pp. 3115–3127, 2014.

[42] Y. Peng, J. Guo, F. Li, W. Qian, and A. Zhou, “Persistent bloom filter:
Membership testing for the entire history,” in ACM SIGMOD, 2018.

[43] Y. Sun, H. Huang, and S. Chen, “Persistent traffic measurement through
vehicle-to-infrastructure communications in cyber-physical road sys-
tems,” IEEE Transactions on Mobile Computing, vol. 18, no. 7, pp.
1616–1630, 2018.

[44] Q. Shi et al., “Cuckoo counter: Adaptive structure of counters for
accurate frequency and top-k estimation,” IEEE/ACM Transactions on
Networking, vol. 31, no. 4, pp. 1854–1869, 2023.

[45] Q. Shi, C. Jia, W. Li, Z. Liu, T. Yang, G. Xie et al., “Bitmatcher: Bit-
level counter adjustment for sketches,” in IEEE ICDE, 2024.

[46] L. Cao, Q. Shi, Y. Liu, H. Zheng, Y. Xin, W. Li, T. Yang et al., “Bubble
sketch: A high-performance and memory-efficient sketch for finding top-
k items in data streams,” in ACM CIKM, 2024.

[47] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao,
X. Li, and S. Uhlig, “Elastic sketch: Adaptive and fast network-wide
measurements,” in ACM SIGCOMM, 2018.

[48] D. Ting, “Count-min: Optimal estimation and tight error bounds using
empirical error distributions,” in ACM SIGKDD, 2018.

[49] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[50] C. Estan and G. Varghese, “New directions in traffic measurement and
accounting,” in ACM SIGCOMM, 2002.

[51] MAWI Working Group, “MAWI Working Group Traffic Archive,”
http://mawi.wide.ad.jp/mawi/, 2024, accessed: 2024-09-30.

[52] Y. Zhang, J. Li, Y. Lei, T. Yang, Z. Li, G. Zhang, and B. Cui, “On-off
sketch: A fast and accurate sketch on persistence,” Proceedings of the
VLDB Endowment, vol. 14, no. 2, pp. 128–140, 2020.

[53] J. Li, Z. Li, Y. Xu, S. Jiang, T. Yang, B. Cui, Y. Dai, and G. Zhang,
“Wavingsketch: An unbiased and generic sketch for finding top-k items
in data streams,” in ACM SIGKDD, 2020.

[54] W. Li and P. Patras, “Tight-sketch: A high-performance sketch for heavy
item-oriented data stream mining with limited memory size,” in ACM
CIKM, 2023.

[55] W. Li et al., “P-sketch: A fast and accurate sketch for persistent item
lookup,” IEEE/ACM Transactions on Networking, vol. 32, no. 2, pp.
987–1002, 2024.

[56] B. Lahiri, J. Chandrashekar, and S. Tirthapura, “Space-efficient tracking
of persistent items in a massive data stream,” in ACM DEBS, 2011.

[57] I. S. Documentation, https://software.intel.com/enus/node/683883.

