
KickTree: A Recursive Algorithmic Scheme for Packet

Classification with Bounded Worst-Case Performance

ACM/IEEE ANCS 2021

December 13–16, 2021, Layfette, IN, USA

Yao Xin1, Yuxi Liu3, Wenjun Li1,4, Ruyi Yao2, Yang Xu2, and Yi Wang1,3

1Peng Cheng Laboratory, 2Fudan University, China
3Southern University of Science and Technology, China

4Harvard University, USA

CONTENTS

01 Background

03 Proposed Approach

04 Preliminary Evaluation

05 Conclusion and Future Work

02 Motivation

CONTENTS

01 Background

03 Proposed Approach

04 Preliminary Evaluation

05 Conclusion and Future Work

02 Motivation

Packet Classification

 Key for policy enforcement in packet forwarding
Firewall, QoS, OpenFlow, P4, etc.

Forwarding Engine

Header

Classifier (Rule Database)

Predicate Action

Incoming Packet

Payload

Fibre Optics Fibre Optics

Router / Firewall

Header

Outgoing Packet

Payload

Flow Classification

…

exact match
match any

match range

 Well-known taxonomy from David E. Taylor[CSUR 2005]

Notes: adjacent techniques are related;

hybrid techniques overlap quadrant boundaries;

∗ denotes a seminal technique

Existing Solutions

Review on Decision Tree

 Decision-tree construction in packet classification

 1. Rule table matching ↔ Point location in geometric space

 2. Partition the searching space into sub-spaces recursively

 Root node: Whole searching space containing all rules

 Internal node: #rule covered by sub-space > a predefined number of rules (binth)

 Leaf node: #rule covered by sub-space <= a predefined number of rules

 Two major threads of building decision-trees
 Equal-sized cutting (HiCuts, TabTree, Kicktree)

 Equal-dense splitting (HyperSplit, ParaSplit)

R2 R1R6

0000 1111

0000

1111

R5

R4

R3

Field X

Fi
el

d
 Y

Rule #
Field

X

Field

Y
Action

R1 111* * A1

R2 110* * A2

R3 * 010* A3

R4 * 011* A4

R5 01** 10** A5

R6 * * A6

Leaf 2
R3,R4,R5,R6

Leaf 4
R2,R3,R4,R6

Cut-X:4

Leaf 3
R3,R4,R6

Leaf 1
R3,R4,R6

Leaf 5
R1,R3,R4,R6

Cut-X:2

HiCuts-4

CONTENTS

01 Background

03 Proposed Approach

04 Preliminary Evaluation

05 Conclusion and Future Work

02 Motivation

Dilemma in Packet Classification on FPGA

 Multi-field matching

 Large-scale rule set supporting

 Fast dynamic rule update

Current hardware

architecture on

FPGA

Demands in OpenFlow switches

X

Main current

FPGA implementations
Advantage Challenges

Decision Tree
Fast classification Rule replications hinder rule update

Support large scale set Unbalance and unbounded depth

Bit Vector (BV)

Decomposition

Good performance Restricted scale of Vector

Support rule update Only applicable to small-scale rule sets

TabTree: decision tree based method dedicated to FPGA

 Partition rules into subsets based on small fields

For a W-bit wide field Fi with the threshold value of 2K, Fi is a small field if and only if there are no

wildcard (*) at its most significant W-K bits, we call these W-K bits as selectable bits.

Partition

Each selectable bit can map rules into at most two rule subsets without any rule replications

 Build search trees by bit-selecting for each small field

 Tuple Space Search (TSS) or linear search assistant for leaf node

Problems in FPGA implementation for TabTree

 Small field selection relies on empirical characteristics of rules, and the number of

subsets is the exponential size of the small fields

 Eg. if K small fields are selected, 2K subsets need to be generated.

 The distribution of rule subset is uneven, so

that the depth of each decision tree is very

different, which is not conducive to the

convergence of concurrent results by FPGA

 A large number of TSS leaf nodes in

decision trees. Each TSS structure contains

multiple hash tables, and the number of TSS

is unpredictable for each rule set, which is

not friendly to hardware implementation.

CONTENTS

01 Background

03 Proposed Approach

04 Preliminary Evaluation

05 Conclusion and Future Work

02 Motivation

KickTree: Ideas

 The maximum tree depth and binth

are both strictly limited

 Each tree is constructed in an

equalized manner

 Search time of each tree is

balanced, reducing bottleneck effect.

Hardware
friendly
design

No TSS structure
Small leaf &
low depth

Dynamic
partition

Intrinsic
parallelism

 Not adopt TSS

 Build multiple evenly distributed decision

trees in a recursive manner

 Each tree is searched in parallel in hardware

 Break the restriction of static subset partition

 Merges all header fields into the bit-selection range

 Dynamically select bits to establish decision trees

without rule duplication.

The Framework of KickTree

Packet In

Rule Action on Packet

Priority Resolver

1
st
 Tree N

th
 Tree

KickTree classifier

Node

Leaf

Root

Node

Node

Leaf

Node

Leaf

Node

i
th
 Tree

Node

Leaf

Root

Node

Node Leaf

Node

Leaf

Root

Node Node

Node Leaf Leaf

Leaf Leaf

Node

2
nd

 Tree

Node

Leaf

Root

Node

Node

Leaf

Node

Leaf

Node

 Key features:

 Subtrees are dynamically and

recursively constructed

without pre-partition

 multiple evenly distributed

decision trees

 Limited tree depth and binth

(worst-case bounded)

Balanced Bit-selecting

 Local Optimal Strategy: select the "good“ bits one by one and tries to

find the most balance for each bit

 Stop bit-selecting progress in one of the following cases

 tree depth achieves the predefined maximum value

 number of rules in the tree node is less than binth

 remaining unselected rule bits share same values and cannot separate rules

from each other

KickTree Construction

 Steps:
 Starts from building the first tree with the complete rule set

 “kick” rules out of current tree in two cases:
1) value of rules is wildcard in the selecting bit;

2) current node is indivisible (leaf), and the rule number > binth

 Recursive process continues until no rules left

Node

Leaf

Root

Node

Node

Leaf

Node

Leaf

Node

Rule

Kicking

1
st
 Tree

Complete

rule set

Remaining

rule set

2
nd

 Tree

Bit-Selecting Bit-Selecting Rule

Kicking

Remaining

rule set

N
th
 Tree

Bit-Selecting

No

rules

left

Node

Leaf

Root

Node

Node Leaf

Node

Leaf

Root

Node Node

Node Leaf Leaf

Leaf Leaf

Node

A Working Example

 An example rule set with four IPv4 address fields

maximum number of

bits to cut a node: 2

binth: 1

A Working Example

Selectable bit for example rule set

CONTENTS

01 Background

03 Proposed Approach

04 Preliminary Evaluation

05 Conclusion and Future Work

02 Motivation

Experimental Setup

Our implementation of KickTree is available on https://github.com/wenjunpaper/KickTree

as well as http://www.wenjunli.com/KickTree

Compare Objects
CutSplit: the latest cutting based decision tree

TabTree: the latest decision tree based method targeting FPGA

Primary metrics Number of subsets

Memory footprint

Memory access

Update performance

Rule sets
ACL, FW, IPC: 1k, 10k,100k generated by ClassBench

12 rule sets based on 12 seed files

Selection bit length Fixed to 4

Max tree depth Not fixed Fixed to 10

Binth Not fixed Fixed to 8

Number of Subsets

Memory Footprint & Memory Access

Memory Footprint

Average memory access and worst-case memory access

Performance comparison

TabTree CutSplit

Average access

reduction
1.2x 0.99x

Worst-case

access

improvement

2.14x 3.09x

Incremental Update Performance

CONTENTS

01 Background

03 Proposed Approach

04 Preliminary Evaluation

05 Conclusion and Future Work

02 Motivation

Conclusion and Future Work

Conclusion

 KickTree

 an FPGA-friendly updatable packet classifier

 more flexible bit selection scheme

 an evenly distributed and worst-case bounded decision tree scheme

Future work

 improve with more balanced rule mapping

 a smaller number of subtrees

 hardware architecture designed and implemented on FPGA

Thanks！
Q&A

