
PSSketch: Finding Persistent and Sparse Flow with High Accuracy
and Efficiency

Jiayao Wang

wangjiayao@nudt.edu.cn

National University of Defense

Technology, Changsha, China

Qilong Shi

sql23@mails.tsinghua.edu.cn

Tsinghua University

Beijing, China

Xiyan Liang

2212207@mail.nankai.edu.cn

Nankai University

Tianjin, China

Han Wang

wangh15@pcl.ac.cn

Peng Cheng Laboratory

Shenzhen, China

Wenjun Li
∗

wenjunli@pku.org.cn

Peng Cheng Laboratory

Shenzhen, China

Ziling Wei

weiziling@nudt.edu.cn

National University of Defense

Technology, Changsha, China

Weizhe Zhang

wzzhang@hit.edu.cn

Harbin Institute of Technology

Harbin, China

Shuhui Chen
∗

shchen@nudt.edu.cn

National University of Defense

Technology, Changsha, China

Abstract
Finding persistent sparse (PS) flow is critical to early warning of

various threats. Previous works have predominantly focused on

either heavy or persistent flows, with limited attention given to PS

flows. Although some recent studies pay attention to PS flows, they

struggle to establish an objective criterion due to insufficient data-

driven observations, resulting in reduced accuracy. In this paper, we

define a new criterion “anomaly boundary” to distinguish PS flows

from regular flows. Specifically, a flow whose persistence exceeds a

threshold will be protected, while a protected flow with a density

lower than a threshold is reported as a PS flow. We then introduce

PSSketch, a high-precision layered sketch, to find PS flows. PSSketch

employs variable-length bitwise counters, where the first layer

tracks the frequency and persistence of all flows, and the second

layer protects potential PS flows and records overflow counts from

the first layer. Some optimizations have also been implemented to

reduce memory consumption further and improve accuracy. The

experiments show that PSSketch reduces memory consumption

by 1-2 orders of magnitude compared to the strawman solution

combined with existing work. Compared with SOTA solutions for

finding PS flows, it outperforms up to 2.94x higher in F1 score and

reduces ARE by 1-2 orders of magnitude. Meanwhile, PSSketch

achieves a higher throughput than these solutions.

CCS Concepts
• Information systems→ Data stream mining.

Keywords
Data streams; Data mining; Approximate algorithm; Sketch

∗
Corresponding authors.

This work is licensed under a Creative Commons Attribution 4.0 International License.

KDD ’25, Toronto, ON, Canada
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1454-2/2025/08

https://doi.org/10.1145/3711896.3737094

ACM Reference Format:
Jiayao Wang, Qilong Shi, Xiyan Liang, Han Wang, Wenjun Li, Ziling Wei,

Weizhe Zhang, and Shuhui Chen. 2025. PSSketch: Finding Persistent and

Sparse Flow with High Accuracy and Efficiency. In Proceedings of the 31st
ACM SIGKDD Conference on Knowledge Discovery and Data Mining V.2
(KDD ’25), August 3–7, 2025, Toronto, ON, Canada. ACM, New York, NY, USA,

12 pages. https://doi.org/10.1145/3711896.3737094

KDD Availability Link:
The source code of this paper has been made publicly available at https:

//doi.org/10.5281/zenodo.15494637.

1 Introduction
The increasing volume of data flow presents a growing challenge

in ensuring network security through traffic analysis. Approximate

flow processing algorithms have gained popularity due to the exces-

sive resource consumption of precise analysis. Sketches are widely

utilized as a standard data compression tool. In the existing litera-

ture, the task is often divided into spatial and temporal perspectives,

where the number of occurrences and time span will be recorded.

Heavy flow detection is a common task. By approximating the oc-

currence times of flows, this method identifies flows that appear sig-

nificantly more frequently than others [6, 8, 10, 11, 33, 47, 49, 52, 55].

The time span is typically represented by dividing the time into

equal intervals, referred to as time windows, and counting the

number of windows in which a flow has appeared, known as flow

persistence. Persistent flow detection has garnered increasing at-

tention in recent years [7, 9, 15, 21, 51].

However, many attacks are not heavy flows; instead, they tend

to conceal themselves and persist for a long time. For example,

backdoor programs or reverse proxies may continuously send a

few packets to the target to ensure stable control or retrieve infor-

mation. Beyond the scope of attacks, detecting persistent sparse

(PS) flows is also valuable for server administrators. Some users

may access resources continuously over long periods, consuming

significant server resources while contributing little in return. For

instance, in online gaming, account sellers may create numerous

low-activity accounts to collect daily rewards. Identifying these

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3711896.3737094
https://doi.org/10.1145/3711896.3737094
https://doi.org/10.5281/zenodo.15494637
https://doi.org/10.5281/zenodo.15494637

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Jiayao Wang et al.

behaviors typically requires high-cost technologies, such as regular

expression matching and AI. Deploying these functionalities across

all traffic is often impractical. Therefore, we need a method capa-

ble of preemptively detecting persistent sparse flows to alleviate

their workload. Fortunately, many previous studies have demon-

strated that the majority of flows exhibit low persistence, while

long-duration flows are often associated with larger data volumes,

such as file transfers and online videos. Consequently, identifying

low-frequency persistent flows can significantly reduce the number

of flows that require processing for threat detection, while also

minimizing the interference from most normal flows.

Current frequency-focused algorithms primarily target heavy

flows, rendering them incapable of capturing infrequent flows. Thus,

these algorithms are not applicable in the aforementioned scenarios.

Meanwhile, existing algorithms designed to track persistent flows

do not consider frequency statistics. An intuitive strawman solution

is to combine these two approaches. However, as shown in our

experiments, without optimization for the PS task, such a solution

exhibits low memory efficiency, severely limiting its practicality.

PISketch [15] is currently the only model optimized for the PS task.

However, the criterion it employs to filter PS flows is not based on

data observations. As a result, the filtered flows are not consistently

persistent and sparse. Furthermore, PISketch uses a conventional

sketch to store flow information, which leads to low accuracy.

In this paper, we introduce a novel model, PSSketch, aimed at ac-

curately and efficiently identifying PS flows. Our design is centered

around the following key points:

• Objective Criterion.We analyze three commonly used datasets

derived from real networks. The persistence and density dis-

tribution of flows exhibit similar cliff-like characteristics.

Thus, we can draw an “anomaly boundary”, using persis-

tence and density to define PS flows.

• Protecting PS Flows. Traditional sketches store all flows

within a single structure, where new flows often replace

existing target flows (i.e., PS flows in our task) due tomemory

limitations. We propose a layered data structure, PSSketch,

in which the first layer filters persistent flows, while the

second layer stores PS candidates.

• Bit-Level Counters and Overflow Storage. Existing two-layer

sketch structures often suffer from data redundancy, where

information is stored twice. To address that, the first layer

contains only small bit-level counters, while the second layer

tracks overflow times, which improves memory utilization.

• Optimization. We raise a probabilistic replacement strategy

to protect PS flows during their initial stages, along with

a pruning mechanism to eliminate non-PS flows, thereby

optimizing memory usage. Additionally, Single Instruction

Multiple Data (SIMD) is also used to reduce memory access,

significantly enhancing throughput.

Experiments show that, in comparison to the strawman solution,

PSSketch achieves a reduction in memory requirements by 1 to 2

orders of magnitude. When compared to the SOTA PS flow-finding

model, PISketch, we increase the F1 Score from a range of 0.4-0.6

to over 0.99. Additionally, the average relative error is reduced by 1

to 2 orders of magnitude. Furthermore, PSSketch outperforms both

the strawman solution and PISketch in terms of throughput.

In Section 2, we introduce the background and related work. The

observations and criteria we employed are detailed in Section 3.

Next, we present the proposed PSSketch in Section 4, followed by

a mathematical analysis in Section 5. Subsequently, PSSketch is

evaluated in Section 6. Finally, Section 7 concludes our work.

2 Background and Related Work
2.1 Background
Before introducing our task, we will first provide some key defini-

tions, and more detailed versions can be found in Appendix A.

Flow: Suppose 𝐸 is an ID set of all possible incoming flows. To

simplify the problem, we assume that each element contains only

the ID of a flow, denoted as 𝑒 . A data flow 𝑆 is a multiset of 𝑁

elements ⟨𝑒1, 𝑒2, ..., 𝑒𝑁 ⟩(𝑒𝑖 ∈ 𝐸).
Frequency: In a data flow 𝑆 , the frequency of an element 𝑒𝑖 ∈ 𝑆

refers to its multiplicity, denoted as 𝑓𝑖 . That means 𝑒𝑖 appears 𝑓𝑖
times in the 𝑆 .

Time Window: We divide a longer time interval into many

small intervals of equal length 𝑡 , each of these intervals is called a

time window 𝑇𝑖 .

Persistence: The number of time windows covered by packets

from a certain flow 𝑒 is denoted as its persistence 𝑝𝑖 . This value will

either increase by one or remain constant in each time window.

Density:On longer time spans, density can be calculated directly

from the frequency 𝑓𝑒 and persistence 𝑝𝑒 as 𝑑𝑒 =
𝑓𝑒
𝑝𝑒
.

Unlike packet classification [12, 24, 25, 27, 39–42, 54] and deep

packet inspection [18, 19, 38, 43, 53], identifying specific data flows

requires storing statistical information, such as frequency and per-

sistence. However, by the end of the 20th century, the rapidly

increasing volume of data rendered comprehensive storage im-

practical. To address this issue, probabilistic data structures such as

Filters [7, 13, 14, 17] and Sketches [6, 10, 11, 20, 26, 33, 35–37, 44, 47–

50, 52, 55] were introduced. These structures utilize hash functions

to store information in a compact format, thereby reducing memory

consumption at the expense of accuracy. The trade-off between ac-

curacy and memory usage is central to this issue. In Section 2.2, we

discuss how related works count frequency and persistence, with a

new task proposed in recent years: finding flows with both high per-

sistence and low frequency. Some other approaches [16, 22, 23, 28–

30, 32, 34, 45, 46] have also been proposed for finding specific flows;

however, due to their limited adoption, they will not be discussed

in this paper.

2.2 Related Works
Frequency Estimation. Frequency estimation and persistence

estimation are two main tasks in network data stream mining.

Frequency estimation refers to counting the number of occurrences

for each flow. Count-Min Sketch (CMSketch) [11] is one of the most

widely applied models. To illustrate the core concept of frequency

estimation, we use CMSketch as an example.

As shown in Figure 1(a), CMSketch consists of 𝑋 buckets, each

with 𝑌 counters. When a flow arrives, its ID is processed by 𝑋

different hash functions, generating 𝑋 indices 𝐼1, 𝐼2, ..., 𝐼𝑥 . The cor-

responding counters at each index are then incremented. To query

the frequency of a flow, the same process is performed, and it re-

turns the minimum value among the 𝑋 counters.

PSSketch: Finding Persistent and Sparse Flow with High Accuracy and Efficiency KDD ’25, August 3–7, 2025, Toronto, ON, Canada

5(+1)

…

3(+1)

7(+1)

5(+1)

…

3(+1)

7(+1)

e h2(e)

Y

5(+1)

…

3(+1)

7(+1)

e h2(e)

Y

(a) CMSketch

On, 5(+1)

…

On, 3(+1)

Off, 7

On, 5(+1)

…

On, 3(+1)

Off, 7

e h2(e)

Y

On, 5(+1)

…

On, 3(+1)

Off, 7

e h2(e)

Y

(b) On-off Sketch

…

X

buckets
ID

weight
(+L)/(-1)

windows

e

Y

h(e)Bloom Filter

(c) PISketch

Figure 1: Structure of Related Works.

Due to memory constraints, most sketch-based frequency estima-

tion solutions only focus on identifying “heavy flows”. They target

the few flows that occur with the highest frequency. Thus, they

make the newly arriving flows replace those with low frequencies.

So far, none of these models focus on counting infrequent flows,

which makes it impossible for them to find PS flows.

Persistence Estimation. K-ary Sketch [21] is the first to incor-

porate the temporal dimension by comparing the frequency of flows

across different time intervals to detect changes. BurstSketch [31]

further extends this research within the Filter-Sketch framework.

On-off Sketch (OOSketch) [51] explicitly introduces the concept of

time windows, using persistence to determine whether a flow con-

sistently appears over an extended period. It introduces an on-off

switch based on CMSketch so that the same counter can only be

modified once in a time window, as shown in Figure 1(b). These

solutions do not account for the number of occurrences within each

window, leaving them unsuitable for finding PS flows.

Finding PS flows. In our application scenario, PS flows are

defined by their low frequency and high persistence. A straight-

forward approach is to combine existing models. We propose a

Strawman solution, which uses CMSketch to track frequency and

OOSketch to record persistence. However, it suffers from low mem-

ory efficiency and throughput. PISketch [15] is currently the only

model specifically optimized for PS flows, as it integrates frequency

and persistence. As illustrated in Figure 1(c), PISketch employs a

filter to check whether a flow has appeared in the current time

window and records a weight (𝑊) in the sketch. If a flow appears

for the first time in a time window, its weight is increased by a

predefined value 𝐿 (𝐿 > 1). Each subsequent occurrence of the flow

within the same time window decreases the weight by one, and

the flow is removed once𝑊 reaches zero. Although the weight

indicates PS flow characteristics to some extent, it does not serve as

an accurate criterion, as we will introduce in Section 3. Moreover,

the sketch structure used by PISketch is relatively simple and lacks

optimization based on data characteristics; therefore, it exhibits low

memory utilization.

3 Observation and Criterion
In this section, we will define “What is PS flows”, specifically the

criteria for finding PS flows. Unlike traditional tasks, such as finding

heavy flows, finding persistent flows, or cardinality estimation, fil-

tering PS flows requires attention to both frequency and persistence

as statistical metrics. Therefore, we first need to examine the distri-

bution characteristics of these two metrics in common real-world

datasets. Based on these observations, we will then determine how

to use these distribution characteristics to provide a more objective

and accurate definition, aligned with our research goals. We have

studied three common real-world datasets: CAIDA [2], MAWI [3],

and Campus [49]. Figure 2 shows their distribution characteris-

tics. Intuitively, they exhibit similar patterns. Taking CAIDA as an

example, most flows have persistence below 10, while flows with

persistence above 50 account for only 3.141%. Regarding density,

most flows exhibit values below 2, and the number of flows de-

creases as density increases. Conversely, as density approaches 1,

the number of flows drops sharply, indicating that regular flows

with high persistence rarely have densities near 1. The flows with a

persistence more than 150 or density greater than 3.8 only account

for a very small part, and therefore are not drawn in the figure.

Considering that our goal is to perform pre-filtering for high-

cost threat detection techniques like DPI and AI, we need to define

thresholds to determine the boundary for filtering. Fortunately, the

distribution characteristics above exhibit abrupt changes, which

can be leveraged to determine the boundaries. The idea for defining

this boundary is closely related to our goal: Firstly, we focus only

on persistent flows. A behavior usually requires a large amount of

data to form; even if we input non-persistent flows into DPI or AI

systems, it is difficult to get meaningful results. Additionally, flows

with short durations account for a large proportion, hindering the

reduction of the load on high-cost modules. Secondly, within the

persistent flows, we focus on those with lower density, as our goal

is to identify hidden threat behaviors—there are already many well-

established methods for detecting high-density flows, such as DOS

attacks. This implies that we need a two-dimensional threshold to

define our target, which we refer to as the “anomaly boundary”.

We define the “anomaly boundary” in this paper as follows: a flow

is reported as a PS flow if its persistence exceeds the threshold 𝑝0
and then its density falls below the threshold 𝑑0(e.g., 𝑝0 ∈ [20, 60],
𝑑0 ∈ [1.1, 1.5]). A more lenient boundary reduces the false neg-

atives in threat warning but increases the workload. In practical

deployment, the thresholds should be adjusted according to perfor-

mance and security requirements. Based on the definition, we will

detail our proposed PSSketch in Section 4. Before that, we compared

the top 2,000 PS flows reported by PISketch with those reported by

our method. Specifically, in PISketch, flows with higher weights𝑊

are ranked higher, while under our definition, persistent flows with

lower density are ranked higher. Note that non-persistent flows will

never be considered PS flows. Then, we traverse the three datasets

to obtain the actual statistics of these reported flows.

Figure 3 demonstrates the results and shows the advantage of

using “anomaly boundary” over PISketch’s weights𝑊 . In all these

datasets, we report PS flows that are much more concentrated near

the line 𝑙 : 𝑓 = 𝑝 . This means that we can preferentially find those

sparse flows, while the flows found by PISketch are distributed over

the entire possible range without discrimination.

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Jiayao Wang et al.

1.0 16
.0

31
.0

46
.0

61
.0

76
.0

91
.0

10
6.0

12
1.0

13
6.0

Persistence(P)

0
250
500
750

1000
1250
1500
1750
2000

Co
un

ts

(a) Persistence-CAIDA

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8

Density(D)

0

250

500

750

1000

1250

1500

1750

2000

Co
un

ts

(b) Density-CAIDA

1.0 16
.0

31
.0

46
.0

61
.0

76
.0

91
.0

10
6.0

12
1.0

13
6.0

Persistence(P)

0

2000

4000

6000

8000

10000

Co
un

ts

(c) Persistence-Campus

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8

Density(D)

0

250

500

750

1000

1250

1500

1750

2000

Co
un

ts

(d) Density-Campus

1.0 16
.0

31
.0

46
.0

61
.0

76
.0

92
.0

10
7.0

12
4.0

14
3.0

Persistence(P)

0

200

400

600

800

1000

Co
un

ts

(e) Persistence-MAWI

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8

Density(D)

0

100

200

300

400

500

Co
un

ts

(f) Density-MAWI

Figure 2: The Distribution Characteristics of Different Datasets.

(a) PISketch-CAIDA (b) Ours-CAIDA (c) PISketch-Campus (d) Ours-Campus (e) PISketch-MAWI (f) Ours-MAWI

Figure 3: Top-2K PS Flows Reported by PISketch and Our Method under Different Datasets.

4 Proposed PSSketch
4.1 Data Structure
As illustrated in Figure 4, PSSketch is composed of two layers: the

Competition Layer (CL) and the Protection Layer (PL). The Compe-

tition Layer consists of 𝑋 buckets. Each bucket contains 𝑌 entries.

One entry is responsible for storing information about one flow,

including the flow’s fingerprint (𝐹𝑃), frequency (𝑓), persistence (𝑝),

and flags for storing additional information. Thus, we can denote

the 𝑗𝑡ℎ entry in the 𝑖𝑡ℎ bucket as 𝐵𝑘 [𝑖] .𝐸𝑡 [𝑗] = {𝐹𝑃, 𝑓 , 𝑝, 𝑓 𝑙𝑎𝑔𝑠}.
The length of 𝐹𝑃 , counter 𝑓 , and counter 𝑝 can vary depending on

the load, while the 𝑓 𝑙𝑎𝑔𝑠 are fixed at 2 bits, including a window

identifier𝑊 and an overflow identifier 𝑂𝐹 . The flag𝑊 is initial-

ized to 0 at the beginning of each time window and is set to 1

when the flow in the entry comes in that window. The flag 𝑂𝐹

indicates whether the flow has reported an overflow. We denote

the two flags as 10 , that means the flow has already appeared in

this window and its counter does not overflow. All flows enter the

CL first. With the need to store a large amount of information, the

counters are compressed to under 8 bits. Once the counter of a flow

in the CL overflows, it is reported to the PL. The Protection Layer

consists of an entry vector of length 𝑅. The content of an entry

includes a flow’s ID and the overflow times of its CL counters, that

is, 𝑃𝑟𝑡 [𝑖] = {𝐼𝐷𝑒 , 𝑓
𝑒
𝑜 𝑓
, 𝑝𝑒

𝑜 𝑓
}. Since the persistent flows represent

only a small portion of the total flows, the Protection Layer can

store 𝐼𝐷 , which is longer than 𝐹𝑃 , to reduce hash collisions.

Recording overflow times greatly reduces the length of counters

in two layers, avoiding information redundancy. In addition, the

data transmission is unidirectional from CL to PL, saving the delay

introduced by the data exchange. However, the above two problems

are main bottlenecks of many traditional double-layer sketches.

4.2 Operations
4.2.1 Insert. First, we apply a hash function to a flow’s ID and

get its fingerprint 𝐹𝑃𝑒 = ℎ(𝑒). The𝑚𝑡ℎ
bucket is selected where

𝑚 = 𝐹𝑃𝑒 mod 𝑋 . In that bucket, there are three possible cases:

fof & pof : overflow counter

Protection
Layer

Competition
Layer

X buckets

Y

h(e)

fingerprint

counter f

flcounter p

e

fl: flags for
window(W) & overflow(OF)

……

RR

ID fof pof

Report
 's IDe

Figure 4: Structure of PSSketch.

Case 1: Search 𝐵𝐾 [𝑚] and find an entry that 𝐵𝐾 [𝑚] .𝐸𝑡 [𝑛] .𝐹𝑃 =

𝐹𝑃𝑒 . If it is found, it transitions to𝑈𝑝𝑑𝑎𝑡𝑒 .

Case 2: If no such entry, we search for the first empty entry where

𝐵𝐾 [𝑚] .𝐸𝑡 [𝑛] .𝐹𝑃 = 0 and record 𝐹𝑃 = 𝐹𝑃𝑒 , 𝑓 = 1, 𝑝 = 1, 𝑓 𝑙𝑎𝑔 = 10 .

Therefore, 𝑒 is added to 𝐵𝐾 [𝑚] .𝐸𝑡 [𝑛] successfully.
Case 3: If none of the entries in 𝐵𝐾 [𝑚] satisfy 𝐵𝐾 [𝑚] .𝐸𝑡 [𝑛] .𝐹𝑃 =

𝐹𝑃𝑒 and none are empty, then 𝐵𝐾 [𝑚] is full and transitions to

𝐶𝑜𝑛𝑡𝑒𝑛𝑑 .

The pseudocode of 𝐼𝑛𝑠𝑒𝑟𝑡 can be found in our Github [4].

4.2.2 Update. When a flow 𝑒 has been recorded in 𝐵𝐾 [𝑚] .𝐸𝑡 [𝑛],
we inspect the flag𝑊 . If 𝐵𝐾 [𝑚] .𝐸𝑡 [𝑛] .𝑓 𝑙𝑎𝑔[𝑊] = 0, flow 𝑒 has

not appeared in the current time window. Thus, 𝐵𝐾 [𝑚] .𝐸𝑡 [𝑛] .𝑝 is

incremented by 1. Moreover, 𝐵𝐾 [𝑚] .𝐸𝑡 [𝑛] .𝑓 is incremented by 1,

and 𝐵𝐾 [𝑚] .𝐸𝑡 [𝑛] .𝑓 𝑙𝑎𝑔[𝑊] is updated to 1. Note that we will reset

all 𝑓 𝑙𝑎𝑔[𝑊] to 0 at the beginning of each time window.

Since the counters used in the Competition Layer are small, 𝑓

and 𝑝 may soon overflow after being incremented. The two cases

are:

Case 1: 𝑓 overflows first. In our design, the width of counter 𝑓 is

8 bits, while counter 𝑝 is 6 bits. If 𝑓 overflows first, it indicates that

𝑓𝑒 has reached 2
8 = 256, while 𝑝𝑒 is at most 2

6 − 1 = 63. In this case,

the density 𝐷 = 𝑓 /𝑝 > 4. Flow 𝑒 will not be reported in this case

PSSketch: Finding Persistent and Sparse Flow with High Accuracy and Efficiency KDD ’25, August 3–7, 2025, Toronto, ON, Canada

because even if it meets the condition to become a persistent flow

(i.e., 𝑝𝑒 > 𝑝0), its high density disqualifies it from being protected.

Instead, we eliminate the flow.

Case 2: 𝑝 overflows first. At this point, flow 𝑒 meets the condition

for persistence, and its density 𝐷 = 𝑓 /𝑝 < 4. The flow will be

reported to the PL for protection. The 𝐹𝑙𝑎𝑔[𝑂𝐹] is now set to 1,

and 𝐵𝐾 [𝑚] .𝐸𝑡 [𝑛] .𝑝 is reset to 0.

Case 3: If the 𝐹𝑙𝑎𝑔[𝑂𝐹] has already been 1, this flow is protected.

Whether 𝑓 or 𝑝 overflows, the overflow is directly reported to the

PL, and both 𝐵𝐾 [𝑚] .𝐸𝑡 [𝑛] .𝑓 and 𝐵𝐾 [𝑚] .𝐸𝑡 [𝑛] .𝑝 are reset.

Based on the cases above, the PL performs two types of updates:

Item Creation (Case 2): When flow 𝑒 enters the PL for the first

time, it searches for the first empty entry, denoted as 𝑃𝑟𝑡 [𝑘]. It
writes {𝐼𝐷𝑒 , 0, 1} into it, representing the flow’s identifier, counter

𝑓 overflow times, and counter 𝑝 overflow times. If there is no empty

entry, we replace the flow with the largest density. Since persistent

flows account for a small fraction of all flows, we can avoid this by

appropriately increasing the length of the PL according to the load.

Item Update (Case 3): If flow 𝑒 has already been protected, no

matter 𝑓 or 𝑝 overflows, the Protection Layer finds the entry corre-

sponding to the flow (also denoted as 𝑃𝑟𝑡 [𝑘] here) and increments

either 𝑓 or 𝑝 accordingly. Then, the 𝑟𝑒𝑝𝑜𝑟𝑡 returns “SUCCESS”.

The pseudocode of𝑈𝑝𝑑𝑎𝑡𝑒 can also be found on GitHub [4].

4.2.3 Contend. Contend occurs when the bucket 𝐵𝐾 [𝑚] is filled
in CL. The newly inserted flow 𝑒 will attempt to replace an existing

flow in the bucket. Since, both the frequency 𝑓 and persistence 𝑝

of the new flow 𝑒 are equal to 1, its density cannot be considered.

Thus, we identify the entry with the smallest persistence value, de-

noted as 𝐸𝑡 [ℎ]. To maximize the protection of already stored flows,

we overwrite 𝐵𝐾 [𝑚] .𝐸𝑡 [ℎ] with a probability of 1/𝐵𝐾 [𝑚] .𝐸𝑡 [ℎ] .𝑝 .
Note that a protected flow (i.e., 𝐹𝑙𝑎𝑔[𝑂𝐹] is set to 1) cannot be

replaced. Such an approach implies that a flow with a large persis-

tence value will be hard to replace. In our preliminary experiments,

we find that all flows evicted have a persistence below 4, with most

at 1 or 2. It strengthens the protection of persistent flows in their

early stages. Contend will bring “Ejection Errors”, the main source

of error for sketch-based solutions, which we analyze in Section 5.

4.2.4 Query. A query can be executed at any time. The Compe-

tition Layer will be traversed to find each position where 𝐹𝑃 > 0.

If 𝐹𝑙𝑎𝑔[𝑂𝐹] = 1 in that entry, the flow is persistent. Then, we lo-

cate its 𝐼𝐷 in the Protection Layer to retrieve the overflow counts.

Denote 𝑉𝑃𝐿 as the counter value in the Protection Layer and 𝑉𝐶𝐿
as the counter value in the Competition Layer. The final value 𝑉

can be calculated as 𝑉 = 𝑉𝑃𝐿 × 2
𝐿𝑐 + 𝑉𝐶𝐿 , where 𝐿𝑐 denotes the

bit-length of the counter in the Competition Layer.

In this paper, we utilize an 8-bit counter for frequency (𝑓) and

a 6-bit counter for persistence (𝑝) in the Competition Layer. Sup-

pose their values are 𝑓 = 5 and 𝑝 = 18, while the corresponding

Protection Layer values are 𝑓𝑜 𝑓 = 1 for frequency and 𝑝𝑜 𝑓 = 3

for persistence. The frequency of the flow, 𝑓𝑒 , can be computed as:

𝑓𝑒 = 1 × 2
8 + 5 = 261. Similarly, the persistence, 𝑝𝑒 , is calculated as:

𝑝𝑒 = 3 × 2
6 + 18 = 210. Thus, the density of the flow 𝑑𝑒 is given by:

𝑑𝑒 =
𝑓𝑒
𝑝𝑒

= 1.243. Any flow with a density below the threshold 𝑑0 is

reported as a PS flow, while other flows are considered persistent.

4.3 Optimization
4.3.1 Prune. In our observations for the majority of cases, if a

flow is reported as a PS flow, it will not have a sudden increase in

frequency throughout the entire timeline. Also, in our application

scenario, a latent attack should not generate a high volume of

packets at any time. Therefore, if an entry in PL contains an overflow

counter 𝑓𝑜 𝑓 = 𝜇 larger than its 𝑝𝑜 𝑓 = 𝜏 , the density will be 𝑑𝑒 >

2
8𝜇

2
6 (𝜏+1)−1 =

256𝜇

64(𝜏+1)−1 > 4(𝜇 > 𝜏, 𝜇, 𝜏 ∈ Z+). As a result, the

flow can be cleared from both CL and PL even though it is being

protected.

4.3.2 Burst Elimination. Interestingly, we have found that several

flows generate a high volume of traffic in a short period but exhibit

PS flow characteristics during all other time intervals. With their

relatively high overall density, these flows may not meet the PS

flow criterion for the entire period. With the aim of reporting these

flows for security, if the overflow counter for 𝑓 increases more than

twice in one time window, we only add 2 to the counter 𝑓𝑜 𝑓 .

4.3.3 One-time Traversal. During Insert, we need to traverse𝐵𝐾 [𝑚]
up to three times in order to search for 𝐹𝑃𝑒 , an empty slot, and the

flow with the smallest persistence. In practical use, we introduced

three extra counters at the CL for each bucket (not each entry): an

empty slot indicator 𝐸𝑝 [𝑚], a replacement indicator 𝑅𝑝 [𝑚], and
a replacement counter𝑀𝑖𝑛𝑃 [𝑚], all initialized to -1, as shown in

Figure 5. They will help us find all three locations in one loop.

Ep Rp MinP entry 1 …… entry Ybucket entry 2

Figure 5: Three Extra Counters for Each Bucket.

4.4 A Running Example
Here, we present a simplified example of PSSketch operations. The

green part represents one of the buckets in the Competition Layer

with four entries, while the blue part represents the Protection

Layer. The width of the counter 𝑓 is 8 bits; thus, its overflow value

is 256. In contrast, the overflow value of counter 𝑝 is set to the

persistence threshold of 50 in our example. The following describes

how we handle incoming flows:

Example for Competition Layer. As shown in Figure 6, when 𝑒1
comes for the first time and is hashed to this bucket, it searches

for an empty entry and records ⟨𝐹𝑃𝑒1 , 1, 1, 10 ⟩. Then flow 𝑒1 ar-

rives for the second time within this time window; its counter 𝑓 is

incremented by one while its counter 𝑝 remains unchanged. Sub-

sequently, a new flow 𝑒3 hashes to the same bucket; however, due

to the lack of empty entries, 𝑐𝑜𝑛𝑡𝑒𝑛𝑑 is initiated against 𝑒1, which

has the lowest value of counter 𝑝 . Since 𝑝𝑒1 = 1, the replacement

probability is 1/𝑝𝑒1 = 1, resulting in 𝑒1 being replaced by 𝑒3.

e1e7: <FP, 3, 2, >10

e11: <FP, 6, 8, >

empty

e14: <FP, 19, 11, >10

10

e7: <FP, 3, 2, >10

e11: <FP, 6, 8, >

empty

e14: <FP, 19, 11, >10

10

e7: <FP, 3, 2, >10

e11: <FP, 6, 8, >

e1: <FP, 1, 1, >

e14: <FP, 19, 11, >10

10

10

e1 e7: <FP, 3, 2, >10

e11: <FP, 6, 8, >

e1: <FP, 2, 1, >

e14: <FP, 19, 11, >10

10

10

empty

empty

empty

empty

empty

empty

e3 e7: <FP, 3, 2, >10

e11: <FP, 6, 8, >

e3: <FP, 1, 1, >

e14: <FP, 19, 11, >10

10

10

empty

empty

Figure 6: An Example of 𝐼𝑛𝑠𝑒𝑟𝑡 ,𝑈𝑝𝑑𝑎𝑡𝑒 and 𝐶𝑜𝑛𝑡𝑒𝑛𝑑 .

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Jiayao Wang et al.

Example for Reporting to Protection Layer. After the last update
of flow 𝑒2, as shown in Figure 7, it reaches the overflow value of

counter 𝑝 . It is, therefore, reported to the Protection Layer with

initial information ⟨𝐼𝐷𝑒2 , 0, 1⟩. On the other hand, flow 𝑒5 comes

and makes the counter 𝑓 to be 256. Thus, it reports an overflow of

counter 𝑓 . Upon reporting, its information in the Protection Layer

updates to ⟨𝐹𝑃𝑒5 , 4, 3⟩, satisfying the pruning condition 𝑓𝑜 𝑓 > 𝑝𝑜 𝑓 .

As a result, its information is cleared from both layers.

e2

e5: <FP, 255, 48, >11

e2: <FP, 64, 49, >

e21: <FP, 22, 17, >

e9: <FP, 7, 4, >00

10

e5: <ID, 3, 3>

empty

00

p overflows

Report e5: <FP, 255, 48, >11

e2: <FP, 65, 50(0), >

e21: <FP, 22, 17, >

e9: <FP, 7, 4, >00

11

e5: <ID, 3, 3>

e2: <ID, 0, 1>

00

e5

fof > pof

Prune

e2: <FP, 65, 0, >

e21: <FP, 22, 17, >

e9: <FP, 7, 4, >00

11

e2: <ID, 0, 1>

00

empty

empty

Figure 7: An Example of 𝑅𝑒𝑝𝑜𝑟𝑡 and 𝑃𝑟𝑢𝑛𝑒.

5 Mathematical Analysis
In this section, we first analyze the property of the density of a flow

in 5.1. Then, we derive the error bounds for the PSSketch in 5.2.

Finally, we analyze the time complexity and space complexity of

PSSketch in 5.3. All the proof details can be found in Appendix B.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Frequency

0

500

1000

1500

2000

P
er

si
st

en
ce

The Persistence and Frequency of Data

CAIDA
Campus
MAWI
Theoretical Data

Figure 8: The Persistence and Frequency of Theoretical Data
and the Data of CAIDA, Campus and MAWI.

In this section, we analyze the implementation of PSSketch and

make the following two assumptions:

(1) The majority of flows in the data stream are neither per-

sistent nor sparse (see Figure 3 for supporting evidence).

Consequently, PS flows constitute only a small fraction of

the data stream.

(2) We assume that all flows are mutually independent. For

each flow, it is independent and identically distributed (i.i.d.)

within each window, following a 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 distribution with

parameter 𝜆, where the parameter 𝜆 follows a normal dis-

tribution. Figure 8 demonstrates that our assumptions align

with the flow distribution in the three datasets we used (i.e.,

CAIDA, Campus, and MAWI).

5.1 Property of the Density of a Flow
Based on the given assumption, for a specific flow 𝑒 (with the

corresponding 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 distribution parameter 𝜆), let 𝑛𝑖 represent

the times that flow 𝑒 appears in the 𝑖𝑡ℎ window.

Theorem 5.1. The expectation and variance of frequency, persis-
tence, and density of 𝑒 after the 𝑖𝑡ℎ window is given by:

E[𝑓𝑖] = 𝑖𝜆

E[𝑝𝑖] = 𝑖 ·
(
1 − 𝑒−𝜆

)
E[𝑑𝑖] =

𝜆(
1 − 𝑒−𝜆

) . (1)

VAR[𝑓𝑖] = 𝑖𝜆

VAR[𝑝𝑖] = 𝑖 · 𝑒−𝜆 ·
(
1 − 𝑒−𝜆

)
VAR[𝑑𝑖] ≤

𝜆2(
1 − 𝑒−𝜆

)
2
+ 𝜆 + 𝜆2(

1 − 𝑒−𝜆
) < ∞.

(2)

According to 𝐿𝑝 Convergence Theorem and Dominated Conver-

gence Theorem, we can acknowledge that

lim

𝑖→∞
E[|𝑑𝑖 −

𝜆(
1 − 𝑒−𝜆

) |2] = 0, (3)

which demonstrates that 𝑑𝑖 is 𝐿2 and almost surely converge to

𝜆

(1−𝑒−𝜆) .
Due to the constraint on 𝑝0, the 𝜆 parameter of the Poisson dis-

tribution in the PS flows should neither be too small nor excessively

large, balancing the need to identify low-density flows.

5.2 Error Bound Analysis
For PSSketch, the sources of error come from Ejection Error.

Theorem 5.2.
ˆ𝑑𝑖 is an unbiased estimator of 𝜆

(1−𝑒−𝜆) , and
ˆ𝑑𝑖 𝐿2-

convergence as well as almost surely convergence to 𝜆

(1−𝑒−𝜆) .

Theorem 5.3.
ˆ𝑑𝑖 − 𝑑𝑖 is an unbiased estimator of 0, and ˆ𝑑𝑖 − 𝑑𝑖

𝐿2-convergence as well as almost surely convergence to 0.

This demonstrates that, when the number of windows is suffi-

ciently large, the error caused by ejection converges to zero. This

means that even if a suspected PS flow is ejected, it will eventually

be reported as a PS flow as the number of windows is large enough.

5.3 Complexity Analysis
5.3.1 Time Cost of PSSketch. In the Insert phase, a hash function

is applied once for both the competition and protection layers, each

with a time complexity of 𝑂 (1).

5.3.2 Space Cost of PSSketch.

Theorem 5.4. The total storage space required by PSSketch is

𝑋𝑌 · (𝐿𝐹𝑃𝑐 + 𝐿𝑓𝑐 + 𝐿𝑝𝑐 + 𝐿𝑓 𝑙𝑎𝑔𝑐) + 𝑅 · (𝐿𝐼𝐷𝑐 + 𝐿𝑓𝑜𝑓𝑐 + 𝐿𝑝𝑜𝑓𝑐), (4)

where 𝑅 ≪ 𝑋 · 𝑌 .

Theorem 5.5. The maximum frequency and the maximum per-
sistence of a flow that can be stored in PSSketch is

𝑓𝑚𝑎𝑥 = (2𝐿
𝑓𝑜 𝑓
𝑐 − 1) · (2𝐿

𝑓
𝑐 − 1) ≈ 2

𝐿
𝑓𝑜 𝑓
𝑐 +𝐿𝑓

𝑐 , (5)

𝑝𝑚𝑎𝑥 = (2𝐿
𝑝𝑜𝑓
𝑐 − 1) · (2𝐿

𝑝
𝑐 − 1) ≈ 2

𝐿
𝑝𝑜𝑓
𝑐 +𝐿𝑝𝑐 . (6)

PSSketch: Finding Persistent and Sparse Flow with High Accuracy and Efficiency KDD ’25, August 3–7, 2025, Toronto, ON, Canada

Theorem 5.6. If PISketch stores flow data with the same order of
magnitude for the maximum frequency and persistence as PSSketch,
then the Weight Sketch component of PISketch must have at least:

𝑋𝑌 ·
(
𝐿𝐼𝐷𝑐 + log

2
𝐿 ·

(
𝐿
𝑓𝑜𝑓
𝑐 + 𝐿𝑓𝑐

)
+

(
𝐿
𝑝𝑜𝑓
𝑐 + 𝐿𝑝𝑐

))
(7)

Theorem 5.7. If the Weight Sketch in PISketch and the Competi-
tion Layer in PSSketch occupy the same storage space, then:

𝑝𝑃𝐼𝑆𝑘𝑒𝑡𝑐ℎ𝑚𝑎𝑥 = 2
𝐿𝑁𝑐 − 1 ≪ 𝑝𝑚𝑎𝑥 . (8)

The above arguments demonstrate that, compared to PISketch,

PSSketch has a significant advantage in space complexity due to

its handling of overflows and the use of a dual-layer mechanism

consisting of the Competition Layer and Protection Layer.

6 Evaluation
6.1 Setup
We implement PSSketch in C++with BobHash [1]. The experiments

are run on a PCwith AMDR9 7940H, 16 cores, and 32 GBDRAM.We

have released our source code on theWebsite [5] and the GitHub [4].

The datasets we used are as follows:

CAIDA. It is a set of anonymous IPs collected in 2018 [2] that

contains 2,490K packets with 109,534 flows. The proportion of PS

flow is 1.055%.

Campus. This dataset is collected from a real network within a

campus, utilizing the same data as [49]. It contains 10,000K packets,

comprising 259,948 distinct flows, with PS flows accounting for

1.433% of the total flows.

MAWI.A real traffic trace provided by theMAWIWorkingGroup [3].

It contains 2,000K packets with 200,471 flows. PS flows only take

0.132% total.

6.2 Comparing Solutions and Metrics
In this study, we will compare PSSketch with three distinct models:

Strawman Solution: As introduced in Section 2.2, we utilize CMS-

ketch to estimate frequency and On-off Sketch to estimate persis-

tence, while using an extra array to store information of PS flows.

PISketch: PISketch [15] represents the current SOTA in detecting

PS flow specifically. PSSketch employs a traditional sketch data

structure and defines the concept of “weight” as a criterion for PS

flows.

PISketch-Density: This model is based on PISketch, with modifica-

tions made to its criterion. It now selects PS flows by our proposed

definition, “density” instead of “weight”, while all other processing

procedures remain unchanged. By comparing this model, we aim

to illustrate the structural optimizations introduced by PSSketch.

By comparing the PS flows reported by different solutions with

the actual PS flows in the datasets, we will derive the following two

metrics through comparison with the answer set:

F1 Score: The calculation of the F1 Score is given by the formula

𝐹1 = 2·𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ·𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 , where 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 means the proportion of

PS flows in the predicted set and 𝑅𝑒𝑐𝑎𝑙𝑙 shows the proportion of

PS flows successfully predicted in the answer set.

ARE: The calculation of the Average Relative Error (ARE) is

defined as 𝐴𝑅𝐸 = 1

𝑛

∑𝑛
𝑖=1

��� 𝑦𝑖−�̂�𝑖𝑦𝑖

���, where 𝑦𝑖 is the value stored in

the sketch and 𝑦𝑖 is its actual value. 𝑛 shows the total flows stored

at the end.

Throughput: We will also evaluate the throughput of the three

models, defined as the number of packets processed per second.

6.3 Parameter Evaluation
Our model incorporates three variables: the persistence threshold

𝑝0, the density threshold 𝑑0, and the aspect ratio of the Compe-

tition Layer (𝑋 : 𝑌). This experiment is mainly used to test the

sensitivity and robustness of PSSketch in different scenarios and

workloads. Considering the different loads of various datasets, un-

der the CAIDA and Campus datasets, we set minimal memory to 50

KB, small memory to 100 KB, and large memory to 150 KB. Under

MAWI, the three values correspond to 15 KB, 25 KB, and 50 KB,

respectively.

The impact of the persistent threshold 𝑝0 and the density thresh-

old 𝑑0 on the F1 Score under varying memory constraints𝑀𝑒𝑚 is

illustrated in Figure 9. The width𝑌 is now set to 32, while𝑋 = 𝑀𝑒𝑚
32

.

As 𝑝0 increases, the threshold for entering the Protection Layer

rises, resulting in a significant enhancement of the F1 Score, partic-

ularly pronounced under memory-constrained conditions. This ob-

servation suggests that PSSketch performs better in more stringent

threat detection scenarios. In contrast, the impact of the threshold

𝑑0 on the F1 Score is relatively modest, yet it exhibits a positive

correlation.

Figure 10(a), 10(b) and 10(c) illustrate the influence of 𝑝0 on the

average relative error. The optimal threshold 𝑝0 varies according to

load intensity; for higher intensities, such as in the Campus dataset,

the optimal 𝑝0 is lower. Conversely, as the load intensity decreases,

the optimal threshold 𝑝0 gradually increases.

Figure 10(d),10(e) and 10(f) depict the effect of 𝑝0 on throughput.

In the CAIDA and Campus datasets, stricter criteria significantly

enhance the throughput of PSSketch, especially under conditions

of ample memory. However, in the MAWI dataset, characterized

by the lowest load intensity, the improvements in throughput are

not obvious. Overall, the findings indicate that PSSketch achieves

higher F1 Scores and throughput when addressing more rigorous

threat detection tasks.

Note that in the experiment mentioned above, we do not present

the impact of the threshold 𝐷 on ARE and throughput. This is

because 𝐷 primarily influences query, not 𝑖𝑛𝑠𝑒𝑟𝑡 . Consequently, the
effect of 𝐷 on these two metrics is minimal.

We designate the number of entries 𝑌 within each bucket as the

independent variable, thereby establishing 𝑋 = 𝑀𝑒𝑚
𝑌

. Figure 11

shows the impact of aspect ratio, where the X-axis represents 𝑦,

the factor of 𝑌 , which satisfies 𝑌 = 2
𝑦+1

for visual presentation.

When we increase the bucket width𝑌 while reducing the number of

buckets 𝑋 = 𝑀𝑒𝑚
𝑌

, the F1 Score initially rises and then declines. In-

terestingly, under varying memory constraints, the optimal bucket

width for all datasets consistently falls within the 16-32 range, with

a notable concentration around 16. From the overall trend of ARE,

it is evident that increasing the capacity of each bucket, rather than

simply increasing the number of buckets, is more effective in re-

ducing the average relative error. Moreover, increasing the number

of entries per bucket leads to more memory access per iteration. As

a result, it is reasonable that throughput decreases as the bucket

width 𝑌 increases.

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Jiayao Wang et al.

1.1 1.2 1.3 1.4 1.5
Density Threshold(d0)

0.6

0.8

1.0

F1
 S

co
re

Minimal Memory Small Memory Large Memory

20 30 40 50 60
Persistence Threshold(p0)

0.4

0.6

0.8

1.0

F1
 S

co
re

(a) 𝑝0-F1, CAIDA

20 30 40 50 60
Persistence Threshold(p0)

0.4

0.6

0.8

1.0

F1
 S

co
re

(b) 𝑝0-F1, Campus

20 30 40 50 60
Persistence Threshold(p0)

0.4

0.6

0.8

1.0

F1
 S

co
re

(c) 𝑝0-F1, MAWI

1.1 1.2 1.3 1.4 1.5
Density Threshold(d0)

0.6

0.8

1.0

F1
 S

co
re

(d) 𝑑0-F1, CAIDA

1.1 1.2 1.3 1.4 1.5
Density Threshold(d0)

0.6

0.8

1.0

F1
 S

co
re

(e) 𝑑0-F1, Campus

1.1 1.2 1.3 1.4 1.5
Density Threshold(d0)

0.6

0.8

1.0

F1
 S

co
re

(f) 𝑑0-F1, MAWI

Figure 9: The Impact of Persistence Threshold 𝑝0 and Density Threshold 𝑑0 on F1 Score.

20 30 40 50 60
Persistence Threshold(p0)

1

2

3

4

A
R

E(
×1

0
2)

(a) 𝑝0-ARE, CAIDA

20 30 40 50 60
Persistence Threshold(p0)

1

2

3

4

A
R

E(
×1

0
2)

(b) 𝑝0-ARE, Campus

20 30 40 50 60
Persistence Threshold(p0)

1

2

3

4
A

R
E(

×1
0

2)

(c) 𝑝0-ARE, MAWI

20 30 40 50 60
Persistence Threshold(p0)

7
8
9

10
11

Th
ro

ug
hp

ut
(M

pp
s)

(d) 𝑝0-Tp, CAIDA

20 30 40 50 60
Persistence Threshold(p0)

7
8
9

10
11

Th
ro

ug
hp

ut
(M

pp
s)

(e) 𝑝0-Tp, Campus

20 30 40 50 60
Persistence Threshold(p0)

14

15

16

Th
ro

ug
hp

ut
(M

pp
s)

(f) 𝑝0-Tp, MAWI

Figure 10: The Impact of Persistence Threshold 𝑝0 on ARE and Throughput.

1 2 3 4 5 6
Width factor y (Y = 2y + 1)

0.7

0.8

0.9

1.0

F1
 S

co
re

(a) 𝑌 -F1, CAIDA

1 2 3 4 5 6
Width factor y (Y = 2y + 1)

0.6

0.8

1.0

F1
 S

co
re

(b) 𝑌 -F1, Campus

1 2 3 4 5 6
Width factor y (Y = 2y + 1)

0.6

0.8

1.0

F1
 S

co
re

(c) 𝑌 -F1, MAWI

1 2 3 4 5 6
Width factor y (Y = 2y + 1)

1

2

3

4

A
R

E(
×1

0
2)

(d) 𝑌 -ARE, CAIDA

1 2 3 4 5 6
Width factor y (Y = 2y + 1)

1

2

3

4

A
R

E(
×1

0
2)

(e) 𝑌 -ARE, Campus

1 2 3 4 5 6
Width factor y (Y = 2y + 1)

0.0

0.1

0.2

0.3

A
R

E

(f) 𝑌 -ARE, MAWI

1 2 3 4 5 6
Width factor y (Y = 2y + 1)

6
8

10
12
14

Th
ro

ug
hp

ut
(M

pp
s)

(g) 𝑌 -Tp, CAIDA

1 2 3 4 5 6
Width factor y (Y = 2y + 1)

6
8

10
12
14

Th
ro

ug
hp

ut
(M

pp
s)

(h) 𝑌 -Tp, Campus

1 2 3 4 5 6
Width factor y (Y = 2y + 1)

10

12

14

16

18

Th
ro

ug
hp

ut
(M

pp
s)

(i) 𝑌 -Tp, MAWI

Figure 11: Impact of Aspect Ratio on F1, ARE, Throughput.

6.4 Performance
In this experiment, we selected 𝑝0 = 50, 𝑑0 = 1.2, and 𝑌 = 32 as the

testing parameters and compared the various metrics of PSSketch

against other solutions. It is important to emphasize that the op-

timal parameter combination may vary depending on the dataset

and application scenario. We cannot tailor the parameter selection

specifically for the dataset we used. Thus, the parameters chosen

in this experiment represent a relatively optimal level under the

current dataset, while the potential performance ceiling is higher

than the results we present.

Figure 12(a), 12(b), 12(c) present a comparison of the F1 Scores

under varying memory constraints. In all three datasets, PSSketch

significantly improved the accuracy of PS flow finding, with F1

Score increases of 1.80x-2.94x, 1.87x-2.73x, and 1.21x-1.93x, com-

pared to PISketch, respectively. After modifying PISketch’s defini-

tion of PS flow, the F1 Score still rises to 1.44x. This demonstrates

that not only does our model benefit from a more precise definition,

but our data structure also exhibits clear advantages in filtering PS

flows.

Figure 12(d), 12(e), 12(f) display the ARE under different memory

conditions. Compared to PISketch, our method offers a 1-2 order

of magnitude improvement. Specifically, under the higher load of

the Campus dataset, the error decreases to 1.58%-1.93%, while in

the lowest-load MAWI dataset, the error is reduced to 0.66%-1.42%.

After adjusting the criterion for PISketch, we maintain at least a

one-order-of-magnitude advantage in ARE, further supporting the

high precision of PSSketch’s statistical processing.

Additionally, Figure 12(g), 12(h), 12(i) illustrate the through-

put comparison between PSSketch and PISketch. Since PISketch-

Density only differs in the filtering process of PS flows and does

not alter the data processing, its throughput is identical to that of

PISketch. Experimental results demonstrate that PSSketch achieves

a significant advantage under medium to low loads across all mem-

ory constraints. Specifically, throughput in the CAIDA dataset

reaches 1.28x, and in the MAWI dataset, it reaches 1.50x. Under

higher loads, PSSketch outperforms PISketch in scenarios with

strict memory limitations, achieving a throughput of 1.19x while

being slightly slower than PISketch when memory is more abun-

dant. Across the three datasets, we observe a decreasing trend

in throughput as memory increases, particularly in higher-load

conditions. Section 6.6 proposes an optimization to mitigate this

issue, aiming for superior performance across all datasets, thereby

surpassing PISketch.

PSSketch: Finding Persistent and Sparse Flow with High Accuracy and Efficiency KDD ’25, August 3–7, 2025, Toronto, ON, Canada

10 15 20 25 30 35 40
Memory(KB)

10
2

10
1

10
0

A
R

E

PSS PIS-Den PIS

50 75 100 125 150 175 200
Memory(KB)

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

(a) F1, CAIDA

50 75 100 125 150 175 200
Memory(KB)

0.0

0.5

1.0

1.5

2.0

F1
 S

co
re

(b) F1, Campus

10 15 20 25 30 35 40
Memory(KB)

0.4

0.6

0.8

1.0

F1
 S

co
re

(c) F1, MAWI

50 75 100 125 150 175 200
Memory(KB)

10
2

10
1

10
0

A
R

E

(d) ARE, CAIDA

50 75 100 125 150 175 200
Memory(KB)

10
2

10
1

10
0

A
R

E

(e) ARE, Campus

10 15 20 25 30 35 40
Memory(KB)

10
2

10
1

10
0

A
R

E

(f) ARE, MAWI

50 75 100 125 150 175 200
Memory(KB)

7

8

9

10

Th
ro

ug
hp

ut
(M

pp
s)

PSS PIS

10 15 20 25 30 35 40
Memory(KB)

10
2

10
1

10
0

A
R

E

CAIDA Campus MAWI

50 75 100 125 150 175 200
Memory(KB)

7

8

9

10

Th
ro

ug
hp

ut
(M

pp
s)

(g) Tp, CAIDA

50 75 100 125 150 175 200
Memory(KB)

7

8

9

10

Th
ro

ug
hp

ut
(M

pp
s)

(h) Tp, Campus

10 15 20 25 30 35 40
Memory(KB)

12

14

16

Th
ro

ug
hp

ut
(M

pp
s)

(i) Tp, MAWI

1000 1500 2000 2500 3000
Memory(KB)

0.6

0.8

1.0

F1
 S

co
re

(j) F1, Strawman

1000 1500 2000 2500 3000
Memory(KB)

0.1

0.2

0.3

0.4

0.5

A
R

E

(k) ARE, Strawman

1000 1500 2000 2500 3000
Memory(KB)

1

2

3

4

5

Th
ro

ug
hp

ut
(M

pp
s)

(l) Tp, Strawman

Figure 12: Comparison of Performance.

10 15 20 25 30 35 40
Memory(KB)

10
2

10
1

10
0

A
R

E

PSS PSS-SIMD

50 75 100 125 150 175 200
Memory(KB)

7

8

9

10

11

Th
ro

ug
hp

ut
(M

pp
s)

(a) Tp, CAIDA

50 75 100 125 150 175 200
Memory(KB)

7

8

9

10

11

Th
ro

ug
hp

ut
(M

pp
s)

(b) Tp, Campus

10 15 20 25 30 35 40
Memory(KB)

14

16

18

20

Th
ro

ug
hp

ut
(M

pp
s)

(c) Tp, MAWI

Figure 13: The Performance of PSSketch using SIMD.

Lastly, Figure 12(j), 12(k), and 12(l) present the performance of

the Strawman solution. Since its valid memory range differs by an

order of magnitude from PSSketch and PISketch, its performance

is reported separately. Within the 1MB-3MB memory range, Straw-

man achieves F1 Scores of 0.70-0.84, 0.46-0.86, and 0.90-0.94 with

the three datasets, notably lower than PSSketch. The corresponding

ARE values are 1.11x-6.87x, 2.46x-16.36x, and 0.54x-2.06x compared

to PSSketch. Although Strawman attains a higher F1 Score than

PISketch and its ARE is generally on the same order of magnitude

as that of PSSketch, it requires more than ten times the memory,

and its throughput is only 13.39%–31.39% of that of PSSketch and

15.77%–45.19% of that of PISketch.

6.5 SIMD Optimization
To curb the trend of throughput decreasing with increasing mem-

ory, we utilize SIMD technology in the process of traversing the

Competition Layer, which involves two main operations:

Window Flag Reset: At the beginning of each window, we need

to reset the flag𝑊 of all entries in the 𝑀 buckets to zero. By us-

ing SIMD, the reset for each bucket can be completed within 1-2

memory accesses, significantly reducing memory access time.

Bucket Search: For each flow 𝑒 , the insertion process requires

searching the corresponding bucket 𝐵𝐾 [𝑚]. As discussed in Section
4.3, we previously optimized the three-loop process into a single

loop. With the implementation of SIMD, this loop can be further

reduced to 1-2 memory accesses, enhancing search efficiency.

As shown in Figure 13, the throughput of PSSketch on three

datasets improves by up to 1.68x, 1.48x, and 1.85x, respectively,

after integrating SIMD. More importantly, we eliminate the trend

of decreasing throughput as memory size increases. That means,

PSSketch demonstrates superior speed to the original PSSketch and

strawman across all memory constraints and load intensities.

7 Conclusion
Finding persistent sparse flow is essential for network threat detec-

tion. In this paper, we first observe the distribution characteristics

of different datasets. Then, we introduce a more accurate criterion

for PS flows and propose PSSketch, a highly precise data struc-

ture. PSSketch employs a dual-layer structure with variable-length

bit-level counters; it records frequency and persistence in the Com-

petition Layer and counts overflow times in the Protection Layer,

significantly enhancing memory efficiency. We use isolation protec-

tion and probability replacement to effectively protect potential PS

flows, making it hard to replace themwith a large number of regular

flows. Additionally, optimizations such as pruning, burst elimina-

tion, and one-time traversal are applied to ensure high throughput.

Experiments demonstrate that, compared to combined solutions

and the SOTA method PISketch, we achieve up to 2.94x in F1 Score

and a reduction in ARE by 1-2 orders of magnitude. Furthermore,

our method has higher throughput across all scenarios. Overall,

PSSketch provides a novel solution for finding persistent sparse

flows with both high precision and efficiency.

Acknowledgments
Jiayao Wang finished this work during his internship at the Peng

Cheng Laboratory, under the guidance of the corresponding authors

Wenjun Li and Shuhui Chen. This work was supported in part by

the Major Key Project of Peng Cheng Laboratory (PCL2023A06), the

National Natural Science Foundation of China (U22A2036, 62202486,

62102203), the Key Research and Development Project of Jiangsu

Province (BE2023004-4), the Science and Technology Innovation

Program of Hunan Province (2024RC3139), the Young Top-notch

Talent Project of Guangdong Province (2023TQ07X362), and the

Basic Research Enhancement Program (2021-JCJQ-JJ-0483).

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Jiayao Wang et al.

References
[1] 2025. BOBHash. http://burtleburtle.net/bob/hash/evahash.html.

[2] 2025. The CAIDA Anonymized Internet Traces. http://www.caida.org/data/

overview/.

[3] 2025. MAWI Working Group Traffic Archive. http://mawi.wide.ad.jp/mawi/.

[4] Our GitHub. https://github.com/wenjunpaper/PSSketch.

[5] Our Website. https://wenjunli.com/PSSketch.

[6] Josep Aguilar-Saborit, Pedro Trancoso, Victor Muntes-Mulero, and Josep L.

Larriba-Pey. 2006. Dynamic count filters. Acm Sigmod Record 35, 1 (2006),

26–32.

[7] Burton H. Bloom. 1970. Space/time trade-offs in hash coding with allowable

errors. Commun. ACM 13, 7 (1970), 422–426.

[8] Lu Cao, Qilong Shi, Yuxi Liu, Hanyue Zheng, Yao Xin, Wenjun Li, Tong Yang,

Yangyang Wang, Yang Xu, Weizhe Zhang, and Mingwei Xu. 2024. Bubble Sketch:

A High-performance and Memory-efficient Sketch for Finding Top-k Items in

Data Streams. In ACM CIKM.

[9] Lu Cao, Qilong Shi, Weiqiang Xiao, Nianfu Wang, Wenjun Li, Zhijun Li, Weizhe

Zhang, and Mingwei Xu. 2025. Hypersistent Sketch: Enhanced Persistence

Estimation via Fast Item Separation. In IEEE ICDE.
[10] Saar Cohen and Yossi Matias. 2003. Spectral bloom filters. In ACM SIGMOD.
[11] Graham Cormode and Shan Muthukrishnan. 2005. An improved data stream

summary: The count-min sketch and its applications. Journal of Algorithms 55, 1
(2005), 58–75.

[12] James Daly, Valerio Bruschi, Leonardo Linguaglossa, Salvatore Pontarelli, Dario

Rossi, Jerome Tollet, Eric Torng, and Andrew Yourtchenko. 2019. Tuplemerge:

Fast software packet processing for online packet classification. IEEE/ACM
Transactions on Networking 27, 4 (2019), 1417–1431.

[13] Bin Fan, David G. Andersen, and Michael Kaminsky. 2013. Cuckoo

Filter: Better Than Bloom. login Usenix Magazine 38, 4 (2013).

https://www.usenix.org/publications/login/august-2013-volume-38-number-

4/cuckoo-filter-better-bloom

[14] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z. Broder. 2000. Summary cache:

A scalable wide-area web cache sharing protocol. IEEE/ACM Transactions on
Networking 8, 3 (2000), 281–293.

[15] Zhuochen Fan, Zhoujing Hu, Yuhan Wu, Jiarui Guo, Sha Wang, Wenrui Liu,

Tong Yang, Yaofeng Tu, and Steve Uhlig. 2023. PISketch: Finding Persistent and

Infrequent Flows. IEEE/ACM Transactions on Networking 31, 6 (2023), 3191–3206.
[16] Michael T. Goodrich and Michael Mitzenmacher. 2011. Invertible bloom lookup

tables. In IEEE Allerton.
[17] Thomas M. Graf and Daniel Lemire. 2020. Xor filters: Faster and smaller than

bloom and cuckoo filters. Journal of Experimental Algorithmics 25 (2020), 1–16.
[18] Jordan Holland, Paul Schmitt, Nick Feamster, and Prateek Mittal. 2021. New

directions in automated traffic analysis. In ACM CCS.
[19] Xiaoyang Hou, Jian Liu, Tianyu Tu, Rui Zhang, and Kui Ren. 2024. PrivRE:

Regular Expression Matching for Encrypted Packet Inspection. In IEEE ICDCS.
[20] Jiawei Huang, Wenlu Zhang, Yijun Li, Lin Li, Zhaoyi Li, Jin Ye, and Jianxin Wang.

2022. ChainSketch: An efficient and accurate sketch for heavy flow detection.

IEEE/ACM Transactions on Networking 31, 2 (2022), 738–753.

[21] Balachander Krishnamurthy, Subhabrata Sen, Yin Zhang, and Yan Chen. 2003.

Sketch-based change detection: Methods, evaluation, and applications. In ACM
IMC.

[22] Ashwin Lall, Vyas Sekar, Mitsunori Ogihara, Jun Xu, and Hui Zhang. 2006. Data

streaming algorithms for estimating entropy of network traffic. In ACM SIGMET-
RICS.

[23] Tao Li, Shigang Chen, and Yibei Ling. 2012. Per-flow traffic measurement through

randomized counter sharing. IEEE/ACM Transactions on Networking 20, 5 (2012),

1622–1634.

[24] Wenjun Li, Dagang Li, Yongjie Bai, Wenxia Le, and Hui Li. 2019. Memory-efficient

recursive scheme for multi-field packet classification. IET Communications 13, 9
(2019), 1319–1325.

[25] Wenjun Li, Xianfeng Li, Hui Li, and Gaogang Xie. 2018. CutSplit: A Decision-

Tree Combining Cutting and Splitting for Scalable Packet Classification. In IEEE
INFOCOM.

[26] Weihe Li and Paul Patras. 2023. Tight-Sketch: A high-performance sketch for

heavy item-oriented data stream mining with limited memory size. In ACM
CIKM.

[27] Wenjun Li, Tong Yang, Ori Rottenstreich, Xianfeng Li, Gaogang Xie, Hui Li,

Balajee Vamanan, Dagang Li, and Huiping Lin. 2020. Tuple Space Assisted Packet

Classification With High Performance on Both Search and Update. IEEE Journal
on Selected Areas in Communications 38, 7 (2020), 1555–1569.

[28] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and Vladimir

Braverman. 2016. One sketch to rule them all: Rethinking network flow monitor-

ing with UnivMon. In ACM SIGCOMM.

[29] Yi Lu, Andrea Montanari, Balaji Prabhakar, Sarang Dharmapurikar, and Ab-

dul Kabbani. 2008. Counter braids: A novel counter architecture for per-flow

measurement. In ACM SIGMETRICS.

[30] Lailong Luo, Pengtao Fu, Shangsen Li, Deke Guo, Qianzhen Zhang, and Huaimin

Wang. 2023. Ark filter: A general and space-efficient sketch for network flow

analysis. IEEE/ACM Transactions on Networking 31, 6 (2023), 2825–2839.

[31] Ruijie Miao, Zheng Zhong, Jiarui Guo, Zikun Li, Tong Yang, and Bin Cui. 2022.

BurstSketch: Finding Bursts in Data Streams. IEEE Transactions on Knowledge
and Data Engineering 35, 11 (2022), 11126–11140.

[32] Anirudh Ramachandran, Srinivasan Seetharaman, Nick Feamster, and Vijay

Vazirani. 2008. Fast monitoring of traffic subpopulations. In ACM SIGCOMM.

[33] Pratanu Roy, Arijit Khan, and Gustavo Alonso. 2016. Augmented sketch: Faster

and more accurate stream processing. In ACM SIGMOD.
[34] Robert Schweller, Ashish Gupta, Elliot Parsons, and Yan Chen. 2004. Reversible

sketches for efficient and accurate change detection over network data streams.

In ACM IMC.
[35] Qilong Shi, Chengjun Jia, Wenjun Li, Zaoxing Liu, Tong Yang, Jianan Ji, Gaogang

Xie,Weizhe Zhang, andMinlan Yu. 2024. BitMatcher: Bit-level counter adjustment

for sketches. In IEEE ICDE.
[36] Qilong Shi, Yuchen Xu, Jiuhua Qi, Wenjun Li, Tong Yang, Yang Xu, and Yi Wang.

2023. Cuckoo counter: Adaptive structure of counters for accurate frequency and

top-k estimation. IEEE/ACM Transactions on Networking 31, 4 (2023), 1854–1869.

[37] Lu Tang, Qun Huang, and Patrick P.C. Lee. 2019. MV-Sketch: A fast and compact

invertible sketch for heavy flow detection in network data streams. In IEEE
INFOCOM.

[38] Xiang Wang, Yang Hong, Harry Chang, KyoungSoo Park, Geoff Langdale, Jiayu

Hu, and Heqing Zhu. 2019. Hyperscan: A fast multi-pattern regex matcher for

modern CPUs. In USENIX NSDI.
[39] Yao Xin, Chengjun Jia, Wenjun Li, Ori Rottenstreich, Yang Xu, Gaogang Xie,

Zhihong Tian, and Jun Li. 2025. A Heterogeneous and Adaptive Architecture

for Decision-Tree-Based ACL Engine on FPGA. IEEE Trans. Comput. 74, 1 (2025),
263–277.

[40] Yao Xin, Wenjun Li, Chengjun Jia, Xianfeng Li, Yang Xu, Bin Liu, Zhihong Tian,

and Weizhe Zhang. 2024. Recursive Multi-Tree Construction With Efficient Rule

Sifting for Packet Classification on FPGA. IEEE/ACM Transactions on Networking
32, 2 (2024), 1707–1722.

[41] Yao Xin, Wenjun Li, Guoming Tang, Tong Yang, Xiaohe Hu, and Yi Wang. 2022.

FPGA-based updatable packet classification using TSS-combined bit-selecting

tree. IEEE/ACM Transactions on Networking 30, 6 (2022), 2760–2775.

[42] Yao Xin, Wenjun Li, Gaogang Xie, Yang Xu, and Yi Wang. 2023. A parallel and

updatable architecture for FPGA-based packet classification with large-scale rule

sets. IEEE Micro 43, 2 (2023), 110–119.
[43] Hao Xu, Harry Chang, Wenjun Zhu, Yang Hong, Geoff Langdale, Kun Qiu, and

Jin Zhao. 2023. Harry: A Scalable SIMD-based Multi-literal Pattern Matching

Engine for Deep Packet Inspection. In IEEE INFOCOM.

[44] Tong Yang, Junzhi Gong, Haowei Zhang, Lei Zou, Lei Shi, and Xiaoming Li. 2018.

HeavyGuardian: Separate and guard hot items in data streams. In ACM SIGKDD.
[45] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou, Rui Miao,

Xiaoming Li, and Steve Uhlig. 2018. Elastic sketch: Adaptive and fast network-

wide measurements. In ACM SIGCOMM.

[46] Tong Yang, Alex X Liu, Muhammad Shahzad, Yuankun Zhong, Qiaobin Fu, Zi Li,

Gaogang Xie, and Xiaoming Li. 2016. A shifting bloom filter framework for set

queries. Proceedings of the VLDB Endowment 9, 5 (2016), 408–419.
[47] Tong Yang, Lingtong Liu, Yibo Yan, Muhammad Shahzad, Yulong Shen, Xiaoming

Li, Bin Cui, and Gaogang Xie. 2017. SF-sketch: A fast, accurate, and memory

efficient data structure to store frequencies of data items. In IEEE ICDE.
[48] Tong Yang, Haowei Zhang, Jinyang Li, Junzhi Gong, Steve Uhlig, Shigang Chen,

and Xiaoming Li. 2019. HeavyKeeper: An accurate algorithm for finding Top-𝑘

elephant flows. IEEE/ACM Transactions on Networking 27, 5 (2019), 1845–1858.

[49] Tong Yang, Yang Zhou, Hao Jin, Shigang Chen, and Xiaoming Li. 2017. Pyramid

sketch: A sketch framework for frequency estimation of data streams. Proceedings
of the VLDB Endowment 10, 11 (2017), 1442–1453.

[50] Jin Ye, Lin Li, Wenlu Zhang, Guihao Chen, Yuanchao Shan, Yijun Li, Weihe Li,

and Jiawei Huang. 2022. UA-Sketch: An accurate approach to detect heavy flow

based on uninterrupted arrival. In ACM ICPP.
[51] Yinda Zhang, Jinyang Li, Yutian Lei, Tong Yang, Zhetao Li, Gong Zhang, and Bin

Cui. 2020. On-off sketch: A fast and accurate sketch on persistence. Proceedings
of the VLDB Endowment 14, 2 (2020), 128–140.

[52] Bohan Zhao, Xiang Li, Boyu Tian, Zhiyu Mei, and Wenfei Wu. 2021. DHS:

Adaptive memory layout organization of sketch slots for fast and accurate data

stream processing. In ACM SIGKDD.
[53] Jincheng Zhong, Shuhui Chen, and Biao Han. 2023. FPGA-CPU Architecture

Accelerated Regular Expression Matching With Fast Preprocessing. Comput. J.
66, 12 (2023), 2928–2947.

[54] Jincheng Zhong, Ziling Wei, Shuang Zhao, and Shuhui Chen. 2022. TupleTree: A

high-performance packet classification algorithm supporting fast rule-set updates.

IEEE/ACM Transactions on Networking 31, 5 (2022), 2027–2041.

[55] Yang Zhou, Tong Yang, Jie Jiang, Bin Cui, Minlan Yu, Xiaoming Li, and Steve

Uhlig. 2018. Cold filter: A meta-framework for faster and more accurate stream

processing. In ACM SIGMOD.

http://burtleburtle.net/bob/hash/evahash.html
http://www.caida.org/data/overview/
http://www.caida.org/data/overview/
http://mawi.wide.ad.jp/mawi/
https://github.com/wenjunpaper/PSSketch
https://wenjunli.com/PSSketch
https://www.usenix.org/publications/login/august-2013-volume-38-number-4/cuckoo-filter-better-bloom
https://www.usenix.org/publications/login/august-2013-volume-38-number-4/cuckoo-filter-better-bloom

PSSketch: Finding Persistent and Sparse Flow with High Accuracy and Efficiency KDD ’25, August 3–7, 2025, Toronto, ON, Canada

A Detail Version of Definitions
Flow & Frequency: Consistent with the main content.

Time Window: Given a data flow 𝑆 = {𝑒1, 𝑒2, 𝑒3, . . . , 𝑒𝑁 } and a

window size 𝑡 , the elements of 𝑆 can be partitioned into multiple

subsets, where𝑇0 = {𝑒1, 𝑒2, . . . , 𝑒𝑡 },𝑇1 = {𝑒𝑡+1, 𝑒𝑡+2, . . . , 𝑒2𝑡 }, and so
forth. Each subset𝑇𝑘 contains 𝑡 elements. An element 𝑒𝑖 belongs to

the 𝑘𝑡ℎ window if 𝑒𝑖 ∈ 𝑇𝑘 , or we say 𝑒𝑖 appears in the 𝑘𝑡ℎ window

of the data flow. Mathematically, the window is defined as:

𝑇𝑘 = {𝑒𝑘𝑡+1, 𝑒𝑘𝑡+2, . . . , 𝑒 (𝑘+1)𝑡 } for 0 ≤ 𝑘 <

⌈𝑛
𝑡

⌉
. (9)

Persistence: Let 𝑒𝑖 be an element in a data flow 𝑇 = ⟨𝑇0,𝑇1, ...⟩
which is partitioned by time windows. There exists a subset 𝑇𝑖 =

⟨𝑇𝑖0,𝑇𝑖1, ...⟩ such that 𝑒𝑖 ∈ 𝑇𝑖0, 𝑒𝑖 ∈ 𝑇𝑖1, ... while 𝑒𝑖 does not appear
in any time window in set 𝑇 \𝑇𝑖 . We denote |𝑇𝑖 |, the number of

elements in 𝑇𝑖 , as the persistence of 𝑒𝑖 . That indicates the number

of distinct time windows where 𝑒𝑖 appears at least once.

Density: Given a continuous sequence of 𝜏 windows, if the

element 𝑒𝑖 exists in at least one window, its density is defined as:

𝐷𝜏
𝑖 =

𝑓 𝜏
𝑖

𝑝𝜏
𝑖

, (10)

where 𝑝𝜏
𝑖
denotes the persistence of element 𝑒𝑖 over the 𝜏 win-

dows, representing the number of windows in which 𝑒𝑖 appears,

with 𝑝𝜏
𝑖
> 0, and 𝑓 𝜏

𝑖
represents the frequency of element 𝑒𝑖 in these

𝜏 windows, where 𝑓 𝜏
𝑖

≥ 𝑝𝜏
𝑖
. It reflects the average access intensity

of the element 𝑒𝑖 within the data flow over the specified 𝜏 windows.

B Details of Mathematical Analysis
B.1 Property of the Density of a Flow

Theorem B.1. The expectation and variance of frequency, persis-
tence, and density of 𝑒 after the 𝑖𝑡ℎ window is given by:

E[𝑓𝑖] = 𝑖𝜆, E[𝑝𝑖] = 𝑖
(
1 − 𝑒−𝜆

)
, E[𝑑𝑖] =

𝜆(
1 − 𝑒−𝜆

) . (11)

VAR[𝑓𝑖] = 𝑖𝜆, VAR[𝑝𝑖] = 𝑖 · 𝑒−𝜆 ·
(
1 − 𝑒−𝜆

)
,

VAR[𝑑𝑖] ≤
𝜆2(

1 − 𝑒−𝜆
)
2
+ 𝜆 + 𝜆2(

1 − 𝑒−𝜆
) < ∞.

(12)

Proof.

P[𝑛𝑖 = 𝑘] =
𝜆𝑘

𝑘!
𝑒−𝜆 . (13)

P[𝑛 ≥ 1] = 1 − P[𝑛𝑖 = 0] = 1 − 𝑒−𝜆 . (14)

In other words, the probability that flow 𝑒 appears in each

window is 1 − 𝑒−𝜆 . Given that there are 𝑖 windows in total, the

persistence 𝑝 of the flow follows a binomial distribution: 𝑝 ∼
Binomial(𝑖, 1 − 𝑒−𝜆) .

E[𝑓𝑖] = E[
𝑗=𝑖∑︁
𝑗=1

𝑛 𝑗] =
𝑗=𝑖∑︁
𝑗=1

E[𝑛 𝑗] = 𝑖𝜆. (15)

E[𝑝𝑖] = E[
𝑗=𝑖∑︁
𝑗=1

𝐼 [𝑛 𝑗 ≥1]] =
𝑗=𝑖∑︁
𝑗=1

P[𝑛 𝑗 ≥ 1] = 𝑖 (1 − 𝑒−𝜆) . (16)

E[𝑑𝑖] = E


∑𝑗=𝑖

𝑗=1
𝑛 𝑗∑𝑗=𝑖

𝑗=1
𝐼 [𝑛 𝑗 ≥1]

 = E

E


∑𝑗=𝑖

𝑗=1
𝑛 𝑗∑𝑗=𝑖

𝑗=1
𝐼 [𝑛 𝑗 ≥1]

|
𝑗=𝑖∑︁
𝑗=1

𝐼 [𝑛 𝑗 ≥1]




= E

E

∑𝑗=𝑖

𝑗=1
𝑛 𝑗 𝐼 [𝑛 𝑗 ≥1]∑𝑗=𝑖

𝑗=1
𝐼 [𝑛 𝑗 ≥1]

|
𝑗=𝑖∑︁
𝑗=1

𝐼 [𝑛 𝑗 ≥1]


 =

𝜆

1 − 𝑒−𝜆
.

(17)

VAR[𝑓𝑖] = VAR[
𝑗=𝑖∑︁
𝑗=1

𝑛 𝑗] =
𝑗=𝑖∑︁
𝑗=1

VAR[𝑛 𝑗] = 𝑖𝜆 (18)

VAR[𝑝𝑖] = VAR[
𝑗=𝑖∑︁
𝑗=1

𝐼 [𝑛 𝑗 ≥1]] =
𝑗=𝑖∑︁
𝑗=1

VAR𝐼 [𝑛 𝑗 ≥1] = 𝑖 ·𝑒
−𝜆 ·

(
1 − 𝑒−𝜆

)
(19)

VAR[𝑑𝑖] = E[𝑑2𝑖] − E2 [𝑑𝑖] = E

©­«
∑𝑗=𝑖

𝑗=1
𝑛 𝑗∑𝑗=𝑖

𝑗=1
𝐼 [𝑛 𝑗 ≥1]

ª®¬
2 −

𝜆2(
1 − 𝑒−𝜆

)
2

= E

E
©­«

∑𝑗=𝑖

𝑗=1
𝑛 𝑗∑𝑗=𝑖

𝑗=1
𝐼 [𝑛 𝑗 ≥1]

ª®¬
2

|
𝑗=𝑖∑︁
𝑗=1

𝐼 [𝑛 𝑗 ≥1]


 −

𝜆2(
1 − 𝑒−𝜆

)
2

(20)

E

©­«
∑𝑗=𝑖

𝑗=1
𝑛 𝑗∑𝑗=𝑖

𝑗=1
𝐼 [𝑛 𝑗 ≥1]

ª®¬
2

|
𝑗=𝑖∑︁
𝑗=1

𝐼 [𝑛 𝑗 ≥1]


=

©­«E[
𝑗=𝑖∑︁
𝑗=1

𝑛2𝑗 𝐼 [𝑛 𝑗 ≥1]] + 2E[
∑︁
𝑗<𝑘

]𝑛 𝑗𝑛𝑘 𝐼 [𝑛 𝑗 ≥1] 𝐼 [𝑛𝑘 ≥1]
ª®¬ /©­«

𝑗=𝑖∑︁
𝑗=1

𝐼 [𝑛 𝑗 ≥1]
ª®¬
2

=
©­« 𝜆 + 𝜆

2

1 − 𝑒−𝜆

𝑗=𝑖∑︁
𝑗=1

𝐼 [𝑛 𝑗 ≥1] +
𝜆2(

1 − 𝑒−𝜆
)
2

(
𝐼 [𝑛 𝑗 ≥1]

)
·
(
𝐼 [𝑛 𝑗 ≥1] − 1

)ª®¬
/©­«

𝑗=𝑖∑︁
𝑗=1

𝐼 [𝑛 𝑗 ≥1]
ª®¬
2

=
𝜆2(

1 − 𝑒−𝜆
)
2
+

(
𝜆 + 𝜆2

1 − 𝑒−𝜆
− 𝜆2(

1 − 𝑒−𝜆
)
2

)
/©­«

𝑗=𝑖∑︁
𝑗=1

𝐼 [𝑛 𝑗 ≥1]
ª®¬

(21)

VAR[𝑑𝑖] = E


𝜆2(

1 − 𝑒−𝜆
)
2
+

(
𝜆 + 𝜆2

1 − 𝑒−𝜆
− 𝜆2(

1 − 𝑒−𝜆
)
2

)
/©­«

𝑗=𝑖∑︁
𝑗=1

𝐼 [𝑛 𝑗 ≥1]
ª®¬


=
𝜆2(

1 − 𝑒−𝜆
)
2
+

(
𝜆 + 𝜆2

1 − 𝑒−𝜆
− 𝜆2(

1 − 𝑒−𝜆
)
2

)
E


1∑𝑗=𝑖

𝑗=1
𝐼 [𝑛 𝑗 ≥1]


≤ 𝜆2(

1 − 𝑒−𝜆
)
2
+ 𝜆 + 𝜆2

1 − 𝑒−𝜆
< ∞

(22)

□

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Jiayao Wang et al.

According to 𝐿𝑝 Convergence Theorem we can acknowledge

that lim𝑖→∞ E[|𝑑𝑖 − 𝜆

(1−𝑒−𝜆) |
2] = 0, which demonstrates that 𝑑𝑖 is

𝐿2 and almost surely converge to
𝜆

(1−𝑒−𝜆) .

B.2 Error Bound Analysis
B.2.1 Errors of Flow Ejection.

Theorem B.2.
ˆ𝑑𝑖 is an unbiased estimator of 𝜆

(1−𝑒−𝜆) , and
ˆ𝑑𝑖

𝐿2-convergence as well as almost surely convergence to 𝜆

(1−𝑒−𝜆) .

Proof. According to the structure of PSSketch
ˆ𝑑𝑖 represents the

density of flow 𝑒 , counted from the last kicked window. Without

loss of generality, we assume that the last time flow 𝑒 was kicked

occurred at the 𝑡-th window, denoted as event 𝐾𝑡 . Due to the sta-

tionary increment property of the 𝑑𝑖 process, we can infer that

ˆ𝑑𝑖 |𝐾𝑡 = 𝑑𝑖−𝑡 𝑡 = 0, 1, 2, . . . , 𝑖 − 1. (23)

E[ˆ𝑑𝑖] = E[E[ˆ𝑑𝑖 |𝐾𝑡]] = E[E[𝑑𝑖−𝑡 |𝐾𝑡]] =
𝜆

1 − 𝑒−𝜆
. (24)

VAR[ˆ𝑑𝑖] = E[ˆ𝑑𝑖
2] − E2 [ˆ𝑑𝑖] = E[E[ˆ𝑑𝑖

2 |𝐾𝑡]] − E2 [ˆ𝑑𝑖] < ∞ (25)

According to 𝐿𝑝 Convergence Theorem and Dominated Conver-

gence Theorem, we can acknowledge that

lim

𝑖→∞
E[| ˆ𝑑𝑖 −

𝜆(
1 − 𝑒−𝜆

) |2] = 0, (26)

which shows that
ˆ𝑑𝑖 is 𝐿2 and almost surely converge to 𝜆. □

Theorem B.3.
ˆ𝑑𝑖 − 𝑑𝑖 is an unbiased estimator of 0, and ˆ𝑑𝑖 − 𝑑𝑖

𝐿2-convergence as well as almost surely convergence to 0.

Proof.

E[ˆ𝑑𝑖 − 𝑑𝑖] = E[E[ˆ𝑑𝑖 |𝐾𝑡] − 𝑑𝑖] = E[E[𝑑𝑖−𝑡] − 𝑑𝑖] = 0 (27)

VAR[ˆ𝑑𝑖 − 𝑑𝑖] = E[
(
ˆ𝑑𝑖 − 𝑑𝑖

)
2

] = E[ˆ𝑑𝑖
2] + E[𝑑2𝑖] − 2𝜆 < ∞ (28)

According to 𝐿𝑝 Convergence Theorem, we can acknowledge that

lim

𝑖→∞
E[| ˆ𝑑𝑖 − 𝑑𝑖 |2] = 0, (29)

which shows that
ˆ𝑑𝑖 − 𝑑𝑖 is 𝐿2 and almost surely converge to 0. □

B.3 Complexity Analysis
B.3.1 Time Cost of PSSketch. In the Insert phase, a hash function

is applied once for both the competition and protection layers, each

with a time complexity of 𝑂 (1).

B.3.2 Space Cost of PSSketch.

Theorem B.4. The total storage space required by PSSketch is

𝑋𝑌 · (𝐿𝐹𝑃𝑐 + 𝐿𝑓𝑐 + 𝐿𝑝𝑐 + 𝐿𝑓 𝑙𝑎𝑔𝑐) + 𝑅 · (𝐿𝐼𝐷𝑐 + 𝐿𝑓𝑜𝑓𝑐 + 𝐿𝑝𝑜𝑓𝑐), (30)

where 𝑅 ≪ 𝑋 · 𝑌 .

Proof. In the Competition Layer, there are 𝑋 buckets, each

containing𝑌 cells. Each cell occupies a space of 𝐿𝐹𝑃𝑐 +𝐿𝑓𝑐 +𝐿
𝑝
𝑐 +𝐿

𝑓 𝑙𝑎𝑔
𝑐 .

In the Protection Layer, there is a single bucket containing 𝑅 cells,

and each cell occupies 𝐿𝐼𝐷𝑐 +𝐿𝑓𝑜𝑓𝑐 +𝐿𝑝𝑜𝑓𝑐 . Therefore, the total storage

space required is:

𝑋𝑌 · (𝐿𝐹𝑃𝑐 + 𝐿𝑓𝑐 + 𝐿𝑝𝑐 + 𝐿𝑓 𝑙𝑎𝑔𝑐) + 𝑅 · (𝐿𝐼𝐷𝑐 + 𝐿𝑓𝑜𝑓𝑐 + 𝐿𝑝𝑜𝑓𝑐). (31)

□

Theorem B.5. he maximum frequency and the maximum persis-
tence of a flow that can be stored in PSSketch is

𝑓𝑚𝑎𝑥 = (2𝐿
𝑓𝑜 𝑓
𝑐 − 1) · (2𝐿

𝑓
𝑐 − 1) ≈ 2

𝐿
𝑓𝑜 𝑓
𝑐 +𝐿𝑓

𝑐 , (32)

𝑝𝑚𝑎𝑥 = (2𝐿
𝑝𝑜𝑓
𝑐 − 1) · (2𝐿

𝑝
𝑐 − 1) ≈ 2

𝐿
𝑝𝑜𝑓
𝑐 +𝐿𝑝𝑐 . (33)

Proof. According to the structure of PSSketch, the maximum

frequency that can be stored is the product of the maximum count

that the frequency counters in the Competition Layer can hold and

the overflow count in the Protection Layer, i.e.,

𝑓𝑚𝑎𝑥 = (2𝐿
𝑓𝑜 𝑓
𝑐 − 1) · (2𝐿

𝑓
𝑐 − 1) ≈ 2

𝐿
𝑓𝑜 𝑓
𝑐 +𝐿𝑓

𝑐 . (34)

Similarly, the maximum persistence that can be stored is

𝑝𝑚𝑎𝑥 = (2𝐿
𝑝𝑜𝑓
𝑐 − 1) · (2𝐿

𝑝
𝑐 − 1) ≈ 2

𝐿
𝑝𝑜𝑓
𝑐 +𝐿𝑝𝑐 . (35)

□

Theorem B.6. If PISketch stores flow data with the same order of
magnitude for the maximum frequency and persistence as PSSketch,
then the Weight Sketch component of PISketch must have at least:

𝑋𝑌 ·
(
𝐿𝐼𝐷𝑐 + log

2
𝐿 ·

(
𝐿
𝑓𝑜𝑓
𝑐 + 𝐿𝑓𝑐

)
+

(
𝐿
𝑝𝑜𝑓
𝑐 + 𝐿𝑝𝑐

))
(36)

Proof. For the PISketch, the weight𝑊 must satisfy:

2
𝐿𝑊𝑐 = 𝐿 ·

(
𝐿
𝑓𝑜𝑓
𝑐 + 𝐿𝑓𝑐

)
, (37)

which implies that 𝐿𝑊𝑐 must be the smallest integer greater than or

equal to log
2
𝐿 ·

(
𝐿
𝑓𝑜𝑓
𝑐 + 𝐿𝑓𝑐

)
. Similarly, to store 𝑝𝑚𝑎𝑥 ≈ 2

𝐿
𝑝𝑜𝑓
𝑐 +𝐿𝑝𝑐 ,

the parameter 𝐿𝑁𝑐 in PISketch must be at least 𝐿
𝑝𝑜𝑓
𝑐 + 𝐿𝑝𝑐 . Thus, the

memory required for the Weight Sketch in PISketch is no less than:

𝑋𝑌 ·
(
𝐿𝐼𝐷𝑐 + log

2
𝐿 ·

(
𝐿
𝑓𝑜𝑓
𝑐 + 𝐿𝑓𝑐

)
+

(
𝐿
𝑝𝑜𝑓
𝑐 + 𝐿𝑝𝑐

))
. (38)

□

Theorem B.7. If the Weight Sketch in PISketch and the Compe-
tition Layer in PSSketch occupy storage space of the same order of
magnitude, then:

𝑝𝑃𝐼𝑆𝑘𝑒𝑡𝑐ℎ𝑚𝑎𝑥 = 2
𝐿𝑁𝑐 − 1 ≪ 𝑝𝑚𝑎𝑥 . (39)

Proof. In this case, we have:

𝑝𝑃𝐼𝑆𝑘𝑒𝑡𝑐ℎ𝑚𝑎𝑥 = 2
𝐿𝑁𝑐 −1 = 2

𝐿
𝑝
𝑐 −1 ≪ (2𝐿

𝑝𝑜𝑓
𝑐 −1)·(2𝐿

𝑝
𝑐 −1) = 𝑝𝑚𝑎𝑥 . (40)

□

Overall, the above arguments demonstrate that,compared to

PISketch, PSSketch has a significant advantage in terms of space

complexity due to its overflows and the dual-layer mechanism.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Background
	2.2 Related Works

	3 Observation and Criterion
	4 Proposed PSSketch
	4.1 Data Structure
	4.2 Operations
	4.3 Optimization
	4.4 A Running Example

	5 Mathematical Analysis
	5.1 Property of the Density of a Flow
	5.2 Error Bound Analysis
	5.3 Complexity Analysis

	6 Evaluation
	6.1 Setup
	6.2 Comparing Solutions and Metrics
	6.3 Parameter Evaluation
	6.4 Performance
	6.5 SIMD Optimization

	7 Conclusion
	Acknowledgments
	References
	A Detail Version of Definitions
	B Details of Mathematical Analysis
	B.1 Property of the Density of a Flow
	B.2 Error Bound Analysis
	B.3 Complexity Analysis

