
CoLUE: Collaborative TCAM Update in SDN
Switches

Ruyi Yao∗, Cong Luo∗, Hao Mei∗, Chuhao Chen∗, Wenjun Li†¶, Ying Wan‡, Sen Liu∗, Bin Liu§, Yang Xu∗¶
∗School of Computer Science, Fudan University, China †Harvard University, USA §Tsinghua University, China

‡China Mobile (Suzhou) Software Technology Co., Ltd, China ¶Peng Cheng Laboratory, China

Abstract—With the rapidly changing network, rule update in
TCAM has become the bottleneck for application performance.
In traditional software-defined networks, some application poli-
cies are deployed at the edge switches, while the scarce TCAM
spaces exacerbate the frequency and difficulty of rule updates.
This paper proposes CoLUE, a framework which groups rules
into switches in a balance and dependency minimum way. CoLUE
is the first work that combines TCAM update and rule placement,
making full use of TCAM in distributed switches. Not only does
it accelerate update speed, it also keeps the TCAM space load-
balance across switches. Composed of ruleset decomposition and
subset distribution, CoLUE has an NP-completeness challenge.
We propose heuristic algorithms to calculate a near-optimal rule
placement scheme. Our evaluations show that CoLUE effectively
balances TCAM space load and reduces the average update cost
by more than 1.45 times and the worst-case update cost by up
to 5.46 times, respectively.

I. INTRODUCTION

Software-Defined Networking (SDN) [1] provides an ab-
straction of the network and enables centralized control of
distributed switches. A variety of applications (such as flow en-
gineering, access control and traffic monitoring) are supported
by customizing the ruleset in switches. As the most widely
used memory in SDN switches to store the flow table, Ternary
Content-Addressable Memory (TCAM) [2] is designed for
unparalleled high lookup throughput rather than fast update.
However, with the rapidly changing network, TCAM update
has become the main bottleneck for performance.

Network applications are placing increasing demands on
the frequency and speed of SDN rule updates. The emerging
Intent-Driven Networking (IDN) [3] and autonomous networks
apply faster rule updates in real time intelligently. Besides,
machine learning applications have become a trend to meet
various objectives, which frequently adapt policies to the
dynamically changing network states [4] [5]. Sudden events
such as outages, Denial of Service attacks, or flash crowds
also bring burst updates. Meanwhile, for networks with high
real-time requirements, rules have to be installed within 25ms

This work is supported by Key-Area Research and Development Program of
Guangdong Province (2021B0101400001), NSFC (62150610497, 62172108,
61872213, 62032013, 62272258, 62002066, 62102203), NSFC-RGC
(62061160489), Open Research Projects of Zhejiang Lab (2022QA0AB07),
Shanghai Pujiang Program (2020PJD005), the Major Key Project of PCL
(PCL2021A15, PCL2021A02), National Key Research and Development
Program of China (2022ZD0115303), Basic Research Enhancement Program
of China (2021-JCJQ-JJ-0483), and China Postdoctoral Science Foundation
(2020TQ0158, 2020M682825, PC2021037). Corresponding author: Yang Xu
(xuy@fudan.edu.cn)

to meet stringent Quality of Service (QoS) requirements [6].
Traffic engineering SDN control programs such as Google’s
B4 [7] and Microsoft’s SWAN [8] leave only a 20ms time
budget for flow table update. In security systems and critical
infrastructures, instant response is even more vital [9] [10].

It is indispensable to make TCAM updates fast to meet
application requirements. However, TCAM update is a great
challenge. To ensure semantic correctness, rules with over-
lapped match fields must be placed in descending order of
priority, which makes rule insertion the most time-consuming
operation. A rule insertion can cost as long as 100ms [11].
While the update is in progress, packet lookup has to be
suspended for consistency. The longer the update operation
takes, the greater the packet delay, which potentially causes
packet loss and deteriorates application quality.

The gap between TCAM update performance and appli-
cation requirements is further broadened due to the limited
TCAM capacity. The total number of rules in a traditional
enterprise network can reach 8 million [12], and even 1 billion
in the public cloud [13]. In contrast, TCAMs in commercial
switches can only store 750 to 20k rules [14], [15]. The
shortage of TCAM capacity causes the rules being frequently
swapped in and out, triggering a large number of updates [16].
Meanwhile, full of rules in a TCAM chip makes updates even
slower.

To accelerate TCAM update and mitigate TCAM space
burden, we propose a novel framework called CoLUE, which
combines TCAM update with the rule placement. CoLUE
roots in two observations: (1) the less overlapping of rules,
the faster rule update in a single TCAM [17], [18]; (2) the
more balanced TCAM space load, the smaller probability of
overflow when new rules come. By splitting ruleset and dis-
tributing sub-rulesets in an overlapping minimum and balanced
way among multiple switches, not only can CoLUE reduce the
update cost, but also activates less-used TCAMs to spread the
load.

To the best of our knowledge, CoLUE is the first framework
to coordinate multiple switches to accelerate TCAM updates. It
utilizes a delicate ruleset placement scheme to improve TCAM
update efficiency while balancing TCAM space load. Although
the rule placement problem has been extensively studied
[12]–[14], [19]–[23], existing solutions neglect the final step:
installing rules into TCAMs. They pay no attention to rule
overlapping when making a rule placement plan, which is the
root cause of slow updates in switches. CoLUE faces several

IE
EE

 IN
FO

C
O

M
 2

02
3

- I
EE

E
C

on
fe

re
nc

e
on

 C
om

pu
te

r C
om

m
un

ic
at

io
ns

 |
97

9-
8-

35
03

-3
41

4-
2/

23
/$

31
.0

0
©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

IN
FO

C
O

M
53

93
9.

20
23

.1
02

29
07

4

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on October 17,2024 at 07:52:49 UTC from IEEE Xplore. Restrictions apply.

new challenges for accelerating TCAM updates and proposes
effective heuristic algorithms. The framework is orthogonal to
rule insertion algorithms in a TCAM [17], [18], [24], [25],
and many existing insertion algorithms can be used in it.

In summary, we make the following contributions:
• We design a novel framework CoLUE, which coordi-

nates multiple switches to bring faster updates and better
TCAM space load-balance. It can cooperate with many
existing rule insertion algorithms for a single TCAM.

• To accelerate TCAM update speed, CoLUE decomposes
rulesets into multiple subsets with minimum dependen-
cies, which is a relaxed graph coloring problem with
NP-completeness. Consideration for balance distribution
to switches also adds difficulty, especially when the
topology is complex. Bron-Kerbosch-Cost and Weighted
Space Allocation algorithms are heuristically proposed.
They work collectively to keep sub-ruleset balance with
minimum dependency.

• The advantages of CoLUE are demonstrated through
simulations on three network topologies. Compared with
rule placement algorithms neglecting TCAM updates,
CoLUE reduces the average update cost by more than
1.45 times and the worst cost by up to 5.46 times.

II. BACKGROUND AND MOTIVATION

A. TCAM Update Challenge

Application policies are typically translated into prioritized
ruleset R and stored in a flow table. These rules can be
abstracted as r = (match, action, pri) [26]. r.pri denotes
the priority of a rule, and a smaller number indicates a lower
priority. Rules in a flow table may overlap (i.e., ri.match ∩
rj .match 6= ∅). When a packet arrives at the switch, the
matched rule with the highest priority is found by querying
the flow table and the corresponding action is performed on
the packet. For example, a policy is listed in Fig. 1 (a). Actions
are omitted for generality. Specified by match fields F1 and
F2, each rule is embodied as a rectangle on a 2D plane as
shown in Fig. 1 (b). A new packet f(F1 = 000, F2 = 100)
falls in the overlapping regions of r2 and r5. r2.pri is higher
than r5.pri so r2 should be taken.

TCAM is the most widely used memory in a switch to
store the flow table. All rules are compared with the search
key simultaneously. When multiple rules are matched, TCAM
will return the first of them. Therefore, overlapping rules must
be placed in TCAM in descending order of priority, so that
the highest priority matching rule can be returned. The relative
rule position constraint is named Priority Order Constraint
(POC) [27]. Slow insertion is attributed to POC [17], which
requires many rules to be moved to make room for a newly
inserted rule. The insertion time is proportional to the number
of TCAM accesses, which equals movement steps plus 1. The
more rules need moving, the longer the rule insertion time
and the slower the update speed. Hereafter we use movement
steps to indicate update speed. Deletion and modification are
not considered as they are simple operations [28].

POC is modeled as the rule dependency. If ri.match ∩
rj .match 6= ∅, and ri.pri > rj .pri, we say rj is dependent
on ri and use ri → rj to denote the dependency. The TCAM
entries storing the rules should conform to the condition:

∀ri, rj ∈ R, if ri → rj , A[ri] < A[rj] (1)
A[r] is the TCAM address of rule r. Relationship → is
transitive. If ri → rj ∧ rj → rk, even though ri.match ∩
rk.match = ∅, ri must be put above rk. We call rk is
indirectly dependent on ri. A movement sequence is valid as
long as the condition is satisfied during rules movement.

A directed acyclic graph (DAG) is commonly used to
describe all the direct dependencies in the flow table [29]–[31].
Fig. 1 (c) shows the DAG for Fig. 1 (b). Each node represents
a rule. If rj is dependent on ri, a directed edge is formed,
pointing from ri to rj . We call their relationship ancestor and
child. Paths from the oldest ancestors to the youngest children
are dependency chains. Many chains are intertwined to form
the DAG. The number of movements for a rule insertion is
bounded to the longest chain [18]. We use the longest chain
length to indicate dependency degree, which is represented by
LC. If rules in a TCAM are all independent, there is no chain
and LC = 0. In this case, when a new rule comes, at most
one movement is needed to make space for its insertion. So
LC = 0 is the optimal case. Generally speaking, the shorter
the chain lengths, the smaller the cost of rules insertion [18].
We are committed to reducing LC as much as possible. For
one thing, a small LC means that the worst-case cost of a rule
insertion is small. For another thing, minimizing the longest
chain squeezes the length differences between chains. We can
expect that all chains are small, and the average cost of rule
insertions is low.

B. Decomposable Rulesets

Various applications have different policies according to the
objectives. Policies can be divided into routing policies and
endpoint policies based on objectives, which are undecom-
posable and decomposable respectively.

An endpoint policy specifies the action to process each
packet entering the network. Firewall and ACL policies are
typical representatives. They are often installed in ingress
switches rather than core switches or egress switches, such as
Google Compute Engine’s firewall and Amazon’s EC2 security
group. Policies stored in ingress switches can be differentiated
by VLAN tag [21]. The ruleset is allowed to be distributed
along the flow path as long as the entire policy is applied to
packets before leaving the network. So endpoint policies are
decomposable. We are devoted to decomposing the endpoint
policies and placing the sub-rulesets in all switches to reduce
update time and improve TCAM space load balance while
maintaining flow table lookup correctness. We do not deal
with routing policies.

C. Motivation

We propose CoLUE, a framework that combines TCAM
update with the rule placement. Here is an example demon-

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on October 17,2024 at 07:52:49 UTC from IEEE Xplore. Restrictions apply.

��

��

��

��

����

∗∗∗ ∗

∗∗∗

∗ ∗∗

∗∗∗ ∗

∗∗∗

∗ ∗∗

∗∗∗

∗ ∗

∗ ∗∗

��

��

��

��

��

(a)

𝑟𝑟4

𝑟𝑟6

𝑟𝑟9

𝑟𝑟2 𝑟𝑟7

𝑟𝑟5

𝑟𝑟8

𝐹𝐹1

𝐹𝐹2

000

001

010

011

100

101

110
111

𝑟𝑟3𝑓𝑓

Rule

𝑟𝑟2
𝑟𝑟3
𝑟𝑟4

𝑟𝑟1

𝑭𝑭𝟐𝟐𝑭𝑭𝟏𝟏
∗∗∗ 11∗
000 ∗∗∗
11∗ 1∗∗
∗∗∗ 00∗
∗∗∗ 100
11∗ 0∗∗
001 ∗∗∗
10∗ 10∗
01∗ 1∗∗

𝑟𝑟5
𝑟𝑟6
𝑟𝑟7
𝑟𝑟8
𝑟𝑟9

Pri
10
9
8
7
6
5
4
3
2

𝑟𝑟1

(b)

��

��

��

��

��

��

��

��

��

����

��

��

��

��

��

�

(c)

Fig. 1: An Example of Policy

����

��

��

��

��

��

��

��

��

��

�����110,101�

Fig. 2: New rule insertion

strating our basic idea and the effect of collaborative TCAM
updates among switches.

Suppose the ruleset in Fig. 1 (a) is a generic endpoint policy,
and F1 and F2 are source and destination address respectively.
A traditional policy placement is shown in Fig. 1 (c), in which
s1 is the ingress switch, s4 and s5 are egress switches, with
others core switches. Flows traveling along path 1 and path 2
must conform to the endpoint policy.

If a new rule rnew = (F1 = 110, F2 = 101, pri = 9) is
to be added in the policy, one of the most efficient movement
sequence to make room for rnew is r3 → r5 → r7, which
needs three movements (four TCAM accesses), as colored in
orange in Fig. 2. As the number of rules in s1 continues to
grow, the dependencies of rules will get far more complex,
consequently the update delay is prolonged.

However, if we decompose the endpoint policy into multiple
sub-rulesets and distribute them along paths, the dependency
degree of rules in each switch can be minimized, and switches
are not easily overloaded.

Since endpoint policy in the ingress switch must be applied
to all packets to realize application requirements, sub-rulesets
should be placed in all paths originating from s1, introducing
unnecessary rules installation and rule replication in the net-
work. Luckily, only part of the rules is useful in each path,
and we can store only useful rules along a path [20], [21]. For
example, U1 = {r1, r2, r3, r5, r7, r8, r9} should be applied to
flows whose destination addresses overlap with 1**, so U1 is
supposed to be placed along path 1. Instead, flows traveling
along path 2 will not match U1, so it is wasteful to place U1

along path 2. Similarly, U2 = {r2, r4, r6, r7} is supposed to

��

��

��

��

��

���∪ ���

����

��� ���

����

���

���

��

��

��
...

����

��

��

����

...

����

��

��

��
...

����

��

��

... ...

��

Fig. 3: Ideal Rule Placement Scheme

be placed along path 2 rather than path 1.
Both path 1 and path 2 have 3 switches, and we divide

U1 into relatively balanced and dependency-minimum subsets
U11 = {r1, r5}, U12 = {r2, r3, r7}, U13 = {r8, r9} and
U2 into U21 = {r4}, U22 = {r6, r7}, U23 = {r2}. Each
sub-ruleset is placed in one and only one switch along the
corresponding path without order. The ideal rule placement
scheme is shown as Fig. 3, with LC = 0 for all switches.
Because packets matching rnew should pass along path 1, rnew
is to be inserted in any switch in path 1. The best choice is to
insert rnew into s3, causing 0 movements.

By placing rules with a low dependency degree in a switch,
the number of rules in each switch is reduced and the up-
date speed is increased. When a large amount of new rules
come, multiple switches can install rules in parallel, further
improving the update. CoLUE is able to achieve extremely
fast updates with the balanced and dependency-minimum
decomposition of rulesets. Packets must be processed by the
highest priority rule instead of others and the CoLUE lookup
process is shown as below.

D. Proposed Lookup Procedure

When a packet traverses path 1, we first look up the flow
table in the first switch on the path, and load the priority and

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on October 17,2024 at 07:52:49 UTC from IEEE Xplore. Restrictions apply.

���� ��

��.���, ��.� ��.���, ��.�

Fig. 4: Lookup process

action of the returned rule into the packet header. Arriving
at the next switch, if the returned rule has a higher priority
than the load, it replaces the old one, otherwise no change
happens. This operation continues until leaving the egress
switch. Before the packet leaves the egress switch, the action
carried is performed on it and the load is removed. Fig. 4
shows the example. New packet f(F1 = 000, F2 = 100)
should travel along Path 1 in Fig. 3, which consists of
s1, s3, s5. Packet f enters the network from s1 and r5 is
matched, it carries r5.pri and r5.action (r5.a in short) along
the path. At s3, it matches r2 and r2.pri > r5.pri, so it
changes the load into r2.pri and r2.a. None of rules in s5
are matched, and the load stays unchanged. Before leaving the
network, r2.a is performed on the packet, which is the same
as described in Section II-A and consistent with the policy.
Finally, r2.pri and r2.a are removed from the packet header.

III. OVERVIEW OF COLUE

CoLUE aims to find a good rule placement scheme for
endpoint policies to improve update speed and balance TCAM
space load. Rulesets in switches should have minimum over-
lapping and balanced sizes. In this section, problem formu-
lation for the rule placement problem is shown, and we
emphasize the challenges of optimizing update performance.

A. Problem Formulation

Given a topology G(S,L), S is the set of switches and L is
the set of links. The set of ingress switches is represented by
Sin. We deem policies attached with different ingress switch
sini as one large policy Q. Suppose P is the set of paths in
G, Ui is the set of rules from Q which are useful along Pi.
Ui = {rij , j = 1, ..., Ni}, Pi = {sik, k = 1, ...,Mi}. Ni is the
number of rules in Ui and Mi is the number of switches in
Pi. Only Ui has to be distributed along Pi. We intend to find
a mapping from all rules in Ui to switches in Pi, namely the
rule placement scheme. Define all rules assigned to sk is Rk,
which are from all paths across sk. The part of rules belonging
to Ui is Ri

k. We build DAGk and DAGi
k respectively for

Rk and Ri
k, with dependency degree LCk and LCi

k. CoLUE
has 2 objectives and 2 constraints when decomposing Ui and
distributing rules. Both objectives are applied in each path Pi

since we choose to place rules based on paths.
Objective 1: minimize the maximal dependency degree in

switches along a path. Thus when new rules come, the worst
update time of a rule is bounded and the average update time
is shortened. In CoLUE, the rule placement scheme is not an
Integer Linear Programming (ILP) problem as LC cannot be
represented linearly.

minmax∀k sik∈Pi
LCi

k (2)

Objective 2: keep TCAM space load balance across switches
along a path. The more balance, the less overflow and unnec-
essary rules in and out. A balance TCAM space load is also
good for fast batch updates.

minmax∀k sik∈Pi
|Rk| (3)

Optimization should be achieved while satisfying the fol-
lowing constraints.

Constraint 1: rules installed in a switch should not exceed
the capacity.

∀sk ∈ S, |Rk| < sk.capacity (4)
Constraint 2: semantic correctness requires that all useful

rules are installed along paths.
∀i Ui ⊂ ∩∀k sik∈Pi

Ri
k (5)

B. Challenges of CoLUE

In pursuit of high-speed updates and TCAM space load
balance, we should provide rule decomposition and subset
distribution algorithms for a good rule placement. CoLUE
faces three challenges.

1) Challenge 1: Ruleset Decomposition For Minimum De-
pendency Degree: Our main objective is to minimize the
dependency degree in a TCAM by putting rules with the least
overlapping together. One sub-ruleset will only be installed
in a switch. Generally, the more subsets, the more positions
each rule can choose, thus the easier it is to minimize the
dependency degree and distribute evenly. The maximal number
of subsets that Ui can be divided into is the path lengths Mi.
In ruleset decomposition, we always split Ui into Mi subsets.

To minimize the dependency degree in each TCAM, we
decompose Ui into Mi sub-rulesets {Uij , j = 1, ...,Mi}, and
put the jth sub-ruleset in sij

1. Rules in Uij should have as least
LCi

j as possible. Fig. 5 gives instances of decomposing U1 and
U2 in Fig. 3. The former two sub-figures are the decomposition
of U1 and the last one of U2. Obviously, decomposition
scheme shown in Fig. 5 (b) preserves less dependency than
(a), with maxLC are 0 and 2 respectively. If a new rule is
inserted in U12 in Fig. 5 (a), in the worst case it will bring
3 movements, while in Fig. 5 (b), it at most causes one rule
movement. The dependency degrees shown in Fig. 5 (b) and
(c) are all zeros and they are the best decomposition of U1

and U2 respectively.
Essentially, ruleset decomposition is to take partitions of

nodes from DAG, and places each of them in a switch. Nodes
in a partition generate the induced sub-DAG. The pursuit of
edgeless (LC = 0) sub-DAGs makes ruleset decomposition
a graph coloring problem. Graph coloring problem colors
adjacent nodes with different colors. In ruleset decomposition,
rules painted in the same color are placed in a switch. When
the number of switches is smaller than the chromatic number
of the graph, it is impossible to make all induced sub-DAGs
edgeless. We want the chain lengths in induced sub-DAGs to
be as small as possible. Under such a circumstance, ruleset
decomposition is a relaxed graph coloring problem, allowing

1Sub-rulesets are disordered in deed, and we number them for ease of
description.

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on October 17,2024 at 07:52:49 UTC from IEEE Xplore. Restrictions apply.

��

��

����

��

��

����

��

��

��

��

����

�� ��

������ ���

�� �

(a) A Bad Decomposition of U1

��

�

�� ��

��

��

����

��

��

��

����

��

��

����

�� �� ��

������ ���

� � �

(b) The Best Decomposition of U1

� �� ��

��

����

��

��

����

��

����

��� ��� ���

�� �� ��

(c) The Best Decomposition of U2

Fig. 5: Rule Decomposition

nodes with edges to be painted in the same color while mini-
mizing the consecutive length of the same colored nodes (the
longest chain). Graph coloring is a well known NP-Complete
problem and relaxed graph coloring is no easier than it. As it
is more common that there are not enough switches, CoLUE is
expected to solve the relaxed graph coloring problem. So how
to split ruleset into sub-rulesets with minimum dependency
degree is a challenge.

2) Challenge 2: Tradeoff Between Objectives: The optimal
decomposition method (shown in Challenge 1) may lead to
unbalance when pursuing the minimum dependency in each
switch, while a balanced decomposition may lead to a larger
dependency degree. If P1 has only 2 switches and U1 stays
unchanged, the decomposition for minimum dependency of
U1 is U11 = {r2, r3, r6, r7, r8, r9} and U12 = {r1, r4, r5}.
The size of U11 is twice that of U12, which is unbalanced.
Moving a rule from U11 to U12 can strike a balance, but all
rules in U11 will bring dependency to U12, failing to minimize
the dependency degree. Sometimes it is impossible to achieve
the best of the two objectives at the same time, and how to
make a tradeoff is a challenge.

����

���∪ ���

��

��

��

(a) Bad Share

��

��

����

��

���∪ ���

(b) Good Share

Fig. 6: Rules in Shared Switches
3) Challenge 3: Stress in shared switch: If a switch lies at

multiple paths, we call it a shared switch and others non-shared
switches. The existence of shared switches adds difficulty for
CoLUE. For one thing, it is hard to keep load balance among
shared switches and non-shared switches. For another thing,
subsets from different paths which are placed in the shared
switches may generate dependencies. Fig. 6 (a) shows such
a case. The best decomposition of U1 and U2 is shown in
Fig. 5 (b) and (c), with all the sub-rulesets dependency-free.

However, as the sub-rulesets are disordered, chances are that
U11 and U23 are installed in s1, prolonging LC1 to 2. If U11

and U21 are installed in s1, they will not form dependency
and LC1 is 0. DAG for the good case is shown in Fig. 6 (b).
How to avoid the unbalance and rule dependency in shared
switches is another challenge.

IV. ALGORITHM

The rule placement of CoLUE consists of two components:
ruleset distribution and ruleset decomposition. The former
computes the rule-space allocation in switches for global
balance. The latter splits the ruleset into multiple sub-rulesets
with minimum dependencies.

Since the three challenges are closely related to both sub-
ruleset distribution and ruleset decomposition and NPC prob-
lem exists, CoLUE tackles three challenges heuristically to get
an ideal solution. The rule placement of CoLUE can be broken
down into 3 sub-problems from simple to difficult: (1) how to
minimize dependency degree along a single path; (2) how to
minimize dependency degree under balance constraint along
a single path; and (3) how to minimize dependency degree
under balance constraint over multiple paths. We propose 3
schemes for the sub-problems respectively, and each of them
mainly solves a challenge in Section III-B. We use CoLUEi
to represent the three schemes respectively and CoLUE3 is
the final state of CoLUE. ‘CoLUE’ alone without a number
mentioned in the paper refers to CoLUE3.

A. CoLUE1 for Sub-problem 1
Scheme CoLUE1 focuses only on Challenge 1 along a path.

Since a relaxed graph coloring problem that minimizes the
dependency of the subset of Ui is NP-complete, we heuris-
tically propose the Bron-Kerbosch-Cost (BKC) algorithm to
decompose Ui.

First, the Bron-Kerbosch (BK) algorithm takes out Mi

maximal independent subsets. Then, for the residual rules, put
them in one of the Mi subsets based on the cost function.

Costk = lcik (6)
lcik denotes the chain length in the kth subset caused by the
insertion of the rule. A rule will be placed in the subset in
which it brings the least cost based on the idea of greed.
Since only a path is considered, subsets can be placed in
switches randomly. CoLUE1 achieves the least dependency
degree compared to the other two schemes.

B. CoLUE2 for Sub-problem 2
Scheme CoLUE2 focuses on both dependency minimum

and balance along a path, which corresponds to Challenge
2. Ruleset decomposition also applies the BKC algorithm in
CoLUE2, but balance is taken into account. The maximum
dependent set is taken out by the Bron-Kerbosch algorithm
and divided evenly into Mi subsets. For the residual rules, the
cost function is extended into

Costk = α · lcik + β(
nik
N i

k

− 1)3 (7)

In the cost function, the first term is the same as Section
IV-A. The second term corresponds to objective 2: TCAM

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on October 17,2024 at 07:52:49 UTC from IEEE Xplore. Restrictions apply.

space load balance. nik is the number of rules already placed
in the kth subset after the insertion of r and N i

k is the expected
sizes of subsets for the best balance. N i

k = Ni

Mi
and it indicates

that Ui should be evenly divided. The closer the ratio is to 1,
the better the placement. So the second term encourages rules
to be installed in switches whose ruleset sizes are smaller than
expected. We use the cubic formula to imply that, when nik ≤
N i

k, the larger the difference, the cost value decreases more
sharply, and the more likely the kth subset will be chosen.

BKC can balance the 2 objectives well by adjusting the
ratio of coefficients according to application goals. Subsets can
be placed in switches randomly as CoLUE2 only considers a
single path.

C. CoLUE3 for Sub-problem 3

Scheme CoLUE3 is devoted to making rules in each switch
as balanced as possible with as few dependencies as possible
and it solves challenge 3. A complete balance may be im-
possible when there is a large difference in the sizes of the
path useful rules, and CoLUE3 just does its best. It is the
collaboration of ruleset decomposition and subset distribution
that supports the goal of CoLUE3. In CoLUE3, shares of
switches for paths are calculated first in Section IV-C1, then
rulesets are decomposed into subsets with specified sizes and
minimum dependency degree to guarantee the global balance
and fast update in Section IV-C2.

1) Rule Distribution: To distribute rules in switches with
global balance across multiple paths, we first calculate how
much space a switch should spare for a path and then de-
compose the ruleset according to the share. Weighted Space
Allocation (WSA) algorithm is proposed. It first assigns each
switch a weight, the value of which is the total number
of rules on the paths that pass through the switch. Namely
sk.w =

∑
∀i I(sk ∈ Pi) ·Ni. I is the indicator function which

equals 1 when the input is true. Based on the weights, WSA
then calculates how many rules each passing path Pi should
place on sk. A higher weight means that each path should
assign fewer rules to avoid TCAM space overloading, so the
rule number is determined by the percentage of the inverse
of the weight. W i

k =
1/sik.w∑j=Mi

j=1 1/sij .w
, W i

k is the share of rules

from Ui that should be placed in sk.
Here is an example for WSA. Suppose both Path 1 and Path

2 have 6k rules in Fig. 1. For switches in Path 1, s1, s2, s3 are
assigned the weight of 12k,6k,6k respectively and the W 1

1 =
1
5 ,W

1
2 = 2

5 ,W
1
3 = 2

5 . U1 for Path 1 should be divided into 3
subsets with sizes ratios 1 : 2 : 2.

2) Ruleset Decomposition: In rule decomposition, W i
k out-

puted by WSA is used as the input, and the ratio of subset
sizes should approach W i

k.
As Ui has Ni rules and the subsets size ratio should be

W i
k, the expected rules in sk is N i

k = Ni ·W i
k. In order to

generate subsets with N i
k rules, we further modify the BKC

algorithm. Firstly, the maximum independent set is taken out
by the Bron-Kerbosch algorithm. Then we partition it into Mi

subsets according to W i
k, and place subsets on the switches

with corresponding space share. For the residual rules, the cost

function is the same as before, with different expected rule
numbers N i

k. Although no longer do we decompose ruleset
evenly, we can achieve balance across all switches.

Apart from balance, we should also pay attention to the
dependency degree in shared switches. We explore the reasons
for the phenomenon in Section III-B3. A Ui is determined
by an (ingress switch, egress switch) pair. Define switches
on multiple paths as shared switches, the common rules in
Ui and Uj are shared rules and other rules are non-shared.
Shared rules appear only when the ingress switch of Pi and
Pj are the same. Suppose Pi and Pj intersects at the shared
switch sk, and Uik and Ujk are put in sk. Chances are that
rules from Uik and Ujk form a longer chain, namely LCk >
max{LCi

k, LC
j
k}.

𝒔𝒔𝟒𝟒

𝒔𝒔𝟓𝟓

Shared
Rules

Non-
Shared
Rules𝑟𝑟4

𝑟𝑟6

𝑟𝑟9

𝑟𝑟7

𝑟𝑟5
𝑟𝑟8

𝑭𝑭𝟏𝟏

𝑭𝑭𝟐𝟐

000
001

010

011

100

101
110
111

𝑟𝑟3

𝑼𝑼𝟐𝟐

𝑼𝑼𝟏𝟏

𝑟𝑟2

0

1
𝑟𝑟4

𝑟𝑟6

𝑟𝑟9

𝑟𝑟2 𝑟𝑟7

𝑟𝑟5
𝑟𝑟8

𝐹𝐹1

𝐹𝐹2

𝑟𝑟1

000

001

010

011

100

101

110
111

𝑟𝑟3𝑓𝑓
𝑟𝑟1

Fig. 7: Useful Rules Space
The coexistence of shared rules and non-shared rules in a

switch is the culprit of this phenomenon. Fig. 7 shows an
example. Rules r2, r7 are shared rules in U1 and U2. r2, r7
placed along P1 can form dependency with non-shared rules
r4 placed along P2 in shared switches. Similarly, r2, r7 placed
along P2 can form dependency with non-shared rules r1, r5
placed along P1 (seen in Fig. 6 (a)). A simple way to avoid
such cases is to place shared rules at the latest. We take
shared rules from Ui first, then perform the BKC algorithm
on the remaining rules. After the remaining rules are placed
in switches, shared rules employ the cost function to choose
a switch. Finally, in terms of balance and dependency degree,
CoLUE3 gives a good solution.

Although the complexity of the BKC algorithm is large due
to O(3n/3) of BK, the ruleset in each path is much smaller
than the original policies. Meanwhile, the rule-placement
computation of multiple paths is independent and can be accel-
erated with multi-threaded parallelism, which further mitigates
the time consumption. Moreover, BK is only performed once
for a network to install policies.

D. Dynamic Update
After presenting the rule placement scheme of CoLUE, we

show the update design. The network changes rapidly over
time. When new rules come, we should update incrementally
rather than re-computation to reduce update delay. Update
cases can be (1) a policy update such as updating a firewall,
(2) policy installation when new switches join the network
and bring new policies or (3) a path change such as mobile
destination moves [21].

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on October 17,2024 at 07:52:49 UTC from IEEE Xplore. Restrictions apply.

For the three cases, re-performing CoLUE for an optimal
rule placement is too time-consuming. We regard rules that
need to be (re)installed as batch update requests, and install
them based on the existing rule placement. The cost function is
extended to support batch update scenarios. We first determine
the target paths for rules and then employ the extended cost
function. Rule insertion on multiple paths can be processed in
parallel and we consider a single path.

Suppose the set of new rules to be inserted on the target path
is R′, and the size is |R′|. If |R′| is larger than the remaining
capacities of switches on the target path, CoLUE must be re-
implemented to reallocate switches’ share for rules. Otherwise,
the choices of switches for rules are based on the extended cost
function:

Costk = α · lcik + β(
nik
N i

k

− 1)3 + γ(
cik
Ci

k

− 1)3 (8)

The definition of parameters is the same as that of the
BKC algorithm, and new parameters cik, C

i
k are introduced to

improve the concurrency of rule installation among switches,
denoting the number of new rules inserted into sk and the
expected load respectively. Ci

k = |R′|
Mi

. The closer the third
term is to 1, the better the placement. This term avoids that
some switches are busy installing rules while others are idle
when rules need to be updated. The fewer new rules are
assigned to a switch, the higher probability that a new rule
will be placed in it. If there is only one new rule, γ = 0.

As the calculation of lcik utilizes Depth-First-Search, the
cost function can be calculated fast. With parallel installation
in switches, batch updates can be performed rapidly.

When the number of rules in the network exceeds the total
capacity of all switches, CoLUE fails to handle. We leave the
rule replacement scheme for high hit rates as future work.

V. EVALUATION

Since CoLUE is a framework which only focuses on ruleset
decomposition and sub-ruleset distribution, the existing rule
insertion algorithm Chain [17] is employed to place rules in
TCAM. The network is initialized with the rule placement
scheme and then new rules continue coming for insertion
during all the experiments. The main metrics used in exper-
iments are update cost (# of TCAM accesses) and relative
standard deviation (RSD) of TCAM space load. Updates focus
on insert cases in evaluation, as insert operations are the most
expensive. We use CoLUEi max to denote the worst update
cost and use CoLUEi to indicate the average cost of the
corresponding scheme. The naming of legend is similar to
this in the comparison schemes. The update cost is mainly
determined by the degree of dependency in a TCAM and the
parallel processing of multiple switches, which can be reflected
by serial and parallel updates. In serial insertion, we record
the exact update cost of each rule which reflects the single
TCAM update speed, and in parallel insertion, we focus on
the finish time of a batch rules insertion and calculate how
many update costs per rule on average.

We construct three topologies: (1) a small random topology
with 10 switches, (2) a large random topology with 50

switches, and (3) a fat tree with pod size 4 and 20 switches
in total. ACL rulesets are generated by ClassBench [32] with
sizes ranging from 6k to 25k. Algorithms are implemented
using C/C++ language and compiled by g++. Simulators
are run on a commodity server with the Ubuntu 18.04-LTS
operating system.

We first show the reduction of update cost to demonstrate
the advantage of minimum dependency with serial updates.
Then we demonstrate the advance of CoLUE compared with
the rule placement algorithm OBS [20] and ETRD [23] with
batch updates.

A. Comparison with Ingress-Switch-Close Schemes

Some rule placement methods tend to put rules close to
ingress switches, while CoLUE fully utilizes all switches.
Although CoLUE can insert rules in switches in parallel, we
calculate the average and worst update cost of a rule serially
to reflect the effect of minimum dependency using CoLUE1.
Fig. 8 (a) and (b) are the update cost in Topology 1 and 3
respectively. As the performance trend in Topology 1 and 2 are
similar, we do not show the metrics in Topology 2 due to space
limits. Chain represents the scheme where rules are stored
only in TCAM of ingress switches, assuming a single TCAM
is capable. RCS [33] breaks the ILP rule placement problem
into multiple independent ILP subproblems and prefers placing
rules close to ingress switches along a path. We assign the
same practical capacity of a single TCAM to RCS and
CoLUE1. In Fig. 8 (a), the average cost of CoLUE1 is reduced
by 2.9 times and 1.2 times compared with Chain and RCS
respectively. The worst cost of CoLUE1 is reduced by 1.8
times and 1.3 times compared with Chain max and RCS max
respectively. We can see from Fig. 8 (b) that in Topology 3, the
worst update cost of CoLUE1 is even better than the average
update cost of Chain and RCS. This is attributed to dependency
minimization.

B. Comparison with Other All-switch Schemes

OBS covers the rules and packs groups of rules into
switches to guarantee the correctness of flow table lookups.
ETRD is designed for balanced placement across switches and
lacks an update plan. Policies along all paths are the same in
ETRD. To ensure fairness, we set the rules to be the same on
each path in the experiment and use our cost function to guide
the updates in ETRD. Fig. 9 (a) and (b) show the comparison
of CoLUE3 with OBS and ETRD in Topology 1 and 3
respectively. Parameters are set to α = 50, β = 25, γ = 25 for
the cost function and batches of rules are installed in parallel.
In Topology 1, CoLUE3 reduces the average cost by 3.2 times
and the worst cost by 3.6 times compared with OBS. The
average cost is twice smaller than that of ETRD and the worst
cost is 1.9 times smaller. In Topology 3, CoLUE3 reduces the
average update cost by 5.44 times and the worst update cost by
5.46 times compared with OBS. The reduction is 1.45 times
for the average update cost and 1.93 times for the worst update
cost compared with ETRD. The increased update speed of our
scheme is attributed to that we reduce the insertion cost of a

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on October 17,2024 at 07:52:49 UTC from IEEE Xplore. Restrictions apply.

(a) Topology 1 (b) Topology 3

Fig. 8: Comparison with Ingress-Switch-Close Schemes

(a) Topology 1 (b) Topology 3

Fig. 9: Comparison with All-switch Schemes

rule in each switch, and the insertion concurrency is better.
OBS performs worst because it covers spatially close rules,
resulting in large dependency degrees.

RSD in Fig. 9 indicates the percentage distribution of
TCAM load ratios. A greater value means that the loads
are farther from the average. We can see that CoLUE3 is
slightly less balanced than ETRD in Topology 1, with update
cost reduction by more than half. In Topology 3, CoLUE3
outperforms ETRD. Since there are more paths in Topology
3, CoLUE3 can flexibly adjust the ratio of rules for switches,
so as to be more balanced. OBS generates replicated rules
along each path during covering and packing. To guarantee
policies can be installed, we pack all the remaining rules into
the last switch to reduce the complexity of reperforming OBS
multiple times. This operation has little effect on the update
performance of OBS, but incurs a large RSD. Since OBS does
not take balance into consideration, we do not compare the
balance with OBS.

C. Comparison among Three CoLUE Schemes

The update cost under three schemes is shown in Fig. 10,
with (a) measured in parallel and (b) serially. Eq. 8 is applied
to CoLUE2 and CoLUE3 for updates, with parameters as
α = 50, β = 25, γ = 25, while CoLUE1 employs Eq. 6. Fig.
10 (b) suggests CoLUE1 performs the best in serial updates.
This is because CoLUE1 cuts dependency thoroughly, and
per rule update cost in each TCAM is the smallest. While
in parallel updates, we take the concurrency of installing rules
into account. As shown in Fig. 10 (a), CoLUE3 performs the
best in parallel updates. CoLUE3 achieves a good compro-
mise between dependency and balance, which brings a high
concurrency and fast update in each TCAM. We also notice
that CoLUE1 performs best in a 12k ruleset, this is because
low dependency degrees overcome disadvantages in balance

and concurrency. Generally speaking, CoLUE3 performs best
in update speed.

D. Calculation Time of Update

It is important to make update decisions quickly in dynamic
updates. Fig. 11 shows that the average computation time for a
rule insertion is within 1ms in three topologies. It attributes to
our simple and effective cost function, as well as the balanced
rule placement. CoLUE calculates fastest in Topology 3 as
the symmetric topology brings more balance. We also test the
calculation time of our rule placement scheme and find it can
be done in tens of seconds. Since policies are not frequently
redeployed, we think the time consumption is acceptable.

E. Effects of Parameters

As mentioned in Section III-B, there is a tradeoff between
minimum dependency and balance. As we only care about the
relative ratio of the coefficients and pay no attention to the
absolute values, we test the effects of different weights for β
by fixing the other two parameters. It can be seen from Fig.
12 that the existence of β matters in both update cost and
balance. This is probably because the balanced rulesets curb
the growth of dependency degrees and improve the parallelism
of installation in dynamic updates. α = 50, β = 25, γ = 25
is a good setting. An even larger β does not improve the per-
formance, perhaps due to that the larger β causes intolerable
chain lengths.

VI. DISCUSSON ON THE COLUE OVERHEAD

In this section, we analyze the overhead on switch resources
consumption, bandwidth and latency introduced by CoLUE.
We implement a CoLUE prototype for a firewall policy on
Barefoot Tofino switch EdgeCore Wedge 100BF-32X.

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on October 17,2024 at 07:52:49 UTC from IEEE Xplore. Restrictions apply.

(a) Parallel Updates (b) Serial Updates

Fig. 10: Comparison among Three CoLUE Schemes (Topology 3)

Fig. 11: Calculation Time of Update in Three Topologies

Fig. 12: The Effect of β

A. Impact on Switch Performance

Four extra stages are used by CoLUE’s unoptimized P4 code
as it has to compare the table lookup result and the carried
data. CoLUE only occupies some more gateway resources,
however, the total SRAM and TCAM consumption does not
increase. As CoLUE does not recirculate or mirror packets, the
switch throughput is unaffected. The packet processing latency
adds 17ns, from 305ns to 322ns.

B. Impact on Traffic

In CoLUE, packets are dropped at the egress switches
instead of the ingress switches, and they carry extra data.
However, both the delayed dropped packets and extra carried
data bring little bandwidth overhead. The reason is as follows.
CoLUE’s lookup procedure is transparent to users. It is similar
to INT (Inband Network Telemetry), but does not increase
the load overhead as the number of switch hops traversed
increases. We use 16 bits to carry the priority and 1 bit for the
action. For TCP flows, only the SYN packets need to carry
extra data. If a flow should be denied according to the rules,
it will not establish the connection since its SYN packet is
dropped. In this case, the bandwidth overhead is small enough
to neglect (i.e., only the overhead for the small SYN packet is
introduced). For UDP flows, we can cooperate with T-cache
[34] to set the ingress switches as a cache for rules whose

actions are drop to reduce the bandwidth overhead. We leave
it for future work.

VII. RELATED WORK

A. TCAM Update Algorithms in A Single Switch
There have been lots of works studying how to insert rules

quickly and correctly in a TCAM such as RuleTris [24], PoT
[17], FastRule [18], FastUp [25], GreedyJump [35] and so on.
These studies are orthogonal to our work and can be used in
CoLUE to insert rules. Some works utilize multiple flow tables
in a switch for update acceleration, including TreeCAM [36],
Hermes [37], MagicTCAM [38] and BW-split [17]. However,
these schemes are still in a switch, which may fail to bear the
large number of rules.

B. Distributed Rule Management
Rulesets are usually split and distributed over the network to

achieve flexible objectives. Many previous works are devoted
to minimizing the total number of rules needed. For example,
Palette [19] and ETRD [23] partition a single ruleset based
on bits and distribute the sub-ruleset to each path using a
coloring algorithm. OBS [20], AARP [21] and RCS [33] build
an optimization model, and obtain a rule placement scheme
with an ILP solver and some heuristics. Raptor [39] maxi-
mizes the rules sharing by multiple switches. Other objectives
include maximizing traffic satisfaction [22], [33], reducing the
controller burden [12], reducing table miss [40], [41], reducing
policy conflicts under multiple controllers [42], etc. CoLUE
aims for fast updates and TCAM load balance. Some work
also considers quick updates [20], [33]. Our solution differs
from them in that we take the rule dependencies into account,
which is the root cause of slow updates. Although both CoLUE
and CORA [42] reduce overlapping, CORA only focuses on
conflict rules under multiple controllers, leaving alone conflict-
free rules, which are a vast majority of rules. Update speed is
still encumbered by their overlapping.

VIII. CONCLUSION

To narrow the gap between update delay and application
requirements, we propose a novel framework CoLUE, which
first combines TCAM update with ruleset placement over the
network. CoLUE decomposes rulesets and distributes sub-
rulesets in a balance and dependency minimum way. Our eval-
uation shows that compared with rule placement algorithms
neglecting TCAM updates, CoLUE reduces the average update
cost by more than 1.45 times and the worst cost by up to 5.46
times, with good balance as well.

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on October 17,2024 at 07:52:49 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] J. Tourrilhes, P. Sharma, S. Banerjee, and J. Pettit, “The evolution of
SDN and OpenFlow: a standards perspective,” IEEE Computer Society,
vol. 47, no. 11, pp. 22–29, 2014.

[2] B. Salisbury, “TCAMs and OpenFlow-what every SDN practitioner must
know,” http://tinyurl.com/kjy99uw.

[3] V. Heorhiadi, S. Chandrasekaran, M. K. Reiter, and V. Sekar, “Intent-
driven composition of resource-management SDN applications,” in ACM
CoNEXT, 2018.

[4] Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C. H. Liu, and D. Yang,
“Experience-driven networking: A deep reinforcement learning based
approach,” in IEEE INFOCOM, 2018.

[5] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, A. Vahdat
et al., “Hedera: dynamic flow scheduling for data center networks.” in
USENIX NSDI, 2010.

[6] B. Niven-Jenkins, D. Brungard, M. Betts, N. Sprecher, and S. Ueno,
“Requirements of an MPLS transport profile,” 2009.

[7] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu et al., “B4: Experience with a
globally-deployed software defined WAN,” ACM SIGCOMM Computer
Communication Review, vol. 43, no. 4, pp. 3–14, 2013.

[8] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer, “Achieving high utilization with software-driven
WAN,” in ACM SIGCOMM, 2013.

[9] “Sdn security considerations in the data center,” https://opennetworking.
org/wp-content/uploads/2013/05/sb-security-data-center.pdf.

[10] H. Pan, Z. Li, P. Zhang, K. Salamatian, and G. Xie, “Misconfiguration
checking for SDN: Data structure, theory and algorithms,” in IEEE
ICNP, 2020.

[11] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester, “Fast
failure recovery for in-band OpenFlow networks,” in IEEE international
conference on the Design of reliable communication networks, 2013.

[12] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, “Scalable flow-based
networking with DIFANE,” ACM SIGCOMM Computer Communication
Review, vol. 40, no. 4, pp. 351–362, 2010.

[13] M. Moshref, M. Yu, A. Sharma, and R. Govindan, “vCRIB: Virtualized
rule management in the cloud,” in USENIX HotCloud, 2012.

[14] X.-N. Nguyen, D. Saucez, C. Barakat, and T. Turletti, “Rules placement
problem in OpenFlow networks: A survey,” IEEE Communications
Surveys & Tutorials, vol. 18, no. 2, pp. 1273–1286, 2015.

[15] B. Isyaku, M. S. Mohd Zahid, M. Bte Kamat, K. Abu Bakar, and
F. A. Ghaleb, “Software defined networking flow table management of
OpenFlow switches performance and security challenges: A survey,”
Future Internet, 2020.

[16] N. Katta, O. Alipourfard, J. Rexford, and D. Walker, “CacheFlow:
Dependency-aware rule-caching for software-defined networks,” in ACM
SOSR, 2016.

[17] P. He, W. Zhang, H. Guan, K. Salamatian, and G. Xie, “Partial order
theory for fast TCAM updates,” IEEE/ACM Transactions on Networking,
vol. 26, no. 1, pp. 217–230, 2017.

[18] K. Qiu, J. Yuan, J. Zhao, X. Wang, S. Secci, and X. Fu, “FastRule:
Efficient flow entry updates for TCAM-based OpenFlow switches,”
IEEE Journal on Selected Areas in Communications, vol. 37, no. 3,
pp. 484–498, 2019.

[19] Y. Kanizo, D. Hay, and I. Keslassy, “Palette: Distributing tables in
software-defined networks,” in IEEE INFOCOM, 2013.

[20] N. Kang, Z. Liu, J. Rexford, and D. Walker, “Optimizing the “one big
switch” abstraction in software-defined networks,” in ACM CoNEXT,
2013.

[21] S. Zhang, F. Ivancic, C. Lumezanu, Y. Yuan, A. Gupta, and S. Malik, “An
adaptable rule placement for software-defined networks,” in IEEE/IFIP
DSN, 2014.

[22] X.-N. Nguyen, D. Saucez, C. Barakat, and T. Turletti, “OFFICER:
A general optimization framework for OpenFlow rule allocation and
endpoint policy enforcement,” in IEEE INFOCOM, 2015.

[23] J.-P. Sheu, W.-T. Lin, and G.-Y. Chang, “Efficient TCAM rules distribu-
tion algorithms in software-defined networking,” IEEE Transactions on
Network and Service Management, vol. 15, no. 2, pp. 854–865, 2018.

[24] X. Wen, B. Yang, Y. Chen, L. E. Li, K. Bu, P. Zheng, Y. Yang, and
C. Hu, “RuleTris: Minimizing rule update latency for TCAM-based SDN
switches,” in IEEE ICDCS, 2016.

[25] Y. Wan, H. Song, H. Che, Y. Xu, Y. Wang, C. Zhang, Z. Wang, T. Pan,
H. Li, H. Jiang et al., “FastUp: Compute a better TCAM update scheme
in less time for SDN switches,” in IEEE ICDCS, 2020.

[26] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling innovation
in campus networks,” ACM SIGCOMM computer communication review,
vol. 38, no. 2, pp. 69–74, 2008.

[27] C. Luo, C. Chen, H. Mei, R. Yao, Y. Wan, W. Li, S. Liu, B. Liu, and
Y. Xu, “BubbleTCAM: Bubble reservation in SDN switches for fast
TCAM update,” in IEEE/ACM IWQoS, 2022.

[28] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan, M. Zhang,
J. Rexford, and R. Wattenhofer, “Dynamic scheduling of network
updates,” ACM SIGCOMM Computer Communication Review, vol. 44,
no. 4, pp. 539–550, 2014.

[29] D. Shah and P. Gupta, “Fast updating algorithms for TCAM,” IEEE
Micro, 2001.

[30] A. Voellmy, J. Wang, Y. R. Yang, B. Ford, and P. Hudak, “Maple: Simpli-
fying SDN programming using algorithmic policies,” ACM SIGCOMM
Computer Communication Review, vol. 43, no. 4, pp. 87–98, 2013.

[31] H. Song and J. Turner, “NXG05-2: Fast filter updates for packet
classification using TCAM,” in IEEE GLOBECOM, 2006.

[32] D. E. Taylor and J. S. Turner, “ClassBench: A packet classification
benchmark,” IEEE/ACM transactions on networking, vol. 15, no. 3, pp.
499–511, 2007.

[33] Y.-W. Chang and T.-N. Lin, “An efficient dynamic rule placement for
distributed firewall in SDN,” in IEEE GLOBECOM, 2020.

[34] Y. Wan, H. Song, Y. Xu, Y. Wang, T. Pan, C. Zhang, and B. Liu, “T-
cache: Dependency-free ternary rule cache for policy-based forwarding,”
in IEEE INFOCOM, 2020.

[35] Y. Wan, H. Song, and B. Liu, “Greedyjump: A fast tcam update
algorithm,” IEEE Networking Letters, 2021.

[36] B. Vamanan and T. Vijaykumar, “TreeCAM: Decoupling updates and
lookups in packet classification,” in ACM CoNEXT, 2011.

[37] H. Chen and T. Benson, “Hermes: Providing tight control over high-
performance SDN switches,” in ACM CoNEXT, 2017.

[38] R. Yao, C. Luo, X. Liu, Y. Wan, B. Liu, W. Li, and Y. Xu, “MagicTCAM:
A multiple-TCAM scheme for fast TCAM update,” in IEEE ICNP, 2021.

[39] P. G. Kannan, M. C. Chan, R. T. Ma, and E.-C. Chang, “Raptor: Scalable
rule placement over multiple path in software defined networks,” in IFIP
Networking, 2017.

[40] O. Rottenstreich, A. Kulik, A. Joshi, J. Rexford, G. Rétvári, and D. S.
Menasché, “Cooperative rule caching for SDN switches,” in IEEE
CloudNet, 2020.

[41] M. Jiménez-Lázaro, J. Berrocal, and J. Galán-Jiménez, “Deep reinforce-
ment learning based method for the rule placement problem in software-
defined networks,” in IEEE/IFIP NOMS, 2022.

[42] H. Li, K. Chen, T. Pan, Y. Zhou, K. Qian, K. Zheng, B. Liu, P. Zhang,
Y. Tang, and C. Hu, “CORA: Conflict razor for policies in SDN,” in
IEEE INFOCOM, 2018.

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on October 17,2024 at 07:52:49 UTC from IEEE Xplore. Restrictions apply.

