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Abstract—Access Control Lists (ACLs) are crucial for ensuring the se-
curity and integrity of modern cloud and carrier networks by regulating
access to sensitive information and resources. However, previous soft-
ware and hardware implementations no longer meet the requirements
of modern datacenters. The emergence of FPGA-based SmartNICs
presents an opportunity to offload ACL functions from the host CPU,
leading to improved network performance in datacenter applications.
However, previous FPGA-based ACL designs lacked the necessary
flexibility to support different rulesets without hardware reconfiguration
while maintaining high performance. In this paper, we propose HACL, a
heterogeneous and adaptive architecture for decision-tree-based ACL
engine on FPGA. By employing techniques such as tree decompo-
sition and recirculated pipeline scheduling, HACL can accommodate
various rulesets without reconfiguring the underlying architecture. To
facilitate the efficient mapping of different decision trees to memory
and optimize the throughput of a ruleset, we also introduce a heteroge-
neous framework with a compiler in CPU platform for HACL. We imple-
ment HACL on a typical SmartNIC and evaluate its performance. The
results demonstrate that HACL achieves a throughput exceeding 260
Mpps when processing 100K-scale ACL rulesets, with low hardware
resource utilization. By integrating more engines, HACL can achieve
even higher throughput and support larger rulesets.
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1 INTRODUCTION

Access Control List (ACL) is a security mechanism used
to manage access to resources and prevent unauthorized
access based on predetermined rules, which can lead to
data breaches, security threats, and loss of confidential
information [1]. In modern networks, ACL is an essential
tool for enforcing security policies and regulations, which
is crucial for ensuring the confidentiality, integrity, and
availability of information assets. A typical ACL ruleset
is shown in Table 1. For each packet, the classifier engine
searches the ruleset and outputs the action of the highest-
priority rule matched for subsequent processing.

With the trends of software-defined networking (SDN)
and programmable networking, SmartNIC is emerging as
a promising unit for offloading network functions from
server CPUs [2]. In modern datacenter networks (DCNs),
there are several key requirements for a high-performance
SmartNIC ACL engine compared to traditional ones: 1)
Ample rule capacity which can accommodate over 100K
rules, to account for the multitude of tenants in a cloud
datacenter or the extensive user equipment in a carrier
network. 2) Ability to update rulesets, due to the fact that the
virtual functions of the network protocol stack in datacen-
ters can be updated frequently. 3) High traffic throughput, to
keep pace with the rising adoption of 100GbE NICs and the
recent introduction of 400GbE NICs in modern datacenters.
4) Low classification latency, to avoid directly extending the
completion time for services, as the ACL engine is one step
of end-to-end network processing.

There are three primary hardware compositions uti-
lized in SmartNICs: multi-core processors, specific ASICs,
and FPGAs. Multi-core processors [3], known for their
flexibility, can update the ruleset and expand capacity (sup-
porting 100K+ rules) using software libraries like DPDK
or Hyperscan, without relying on specific rulesets. How-
ever, handling 100Gbps traffic with multi-core processors
requires a significant number of CPU cores. Running a
recently-proposed popular algorithm [4] consumes more
than 30 cores, and the throughput is limited by DRAM
bandwidth under large rulesets [5].

The ASIC-based SmartNIC, such as the NVIDIA Con-
nectX series [6], can have a programmable data path
that is relatively simple to configure. However, this func-
tionality is constrained by predefined functions within
the ASIC [7] [8]. TCAM (Ternary Content Addressable
Memory), a traditional and dominant ASIC solution used



2

TABLE 1
Example ACL rules

Id Addrsrc Addrdst Portsrc Portdst Protocol Action

R1 175.77.88.155 119.106.158.230 * 80 0x06 (TCP) a1

R2 95.105.143.33 144.209.187.155 * 27400 0x06 (TCP) a2

R3 95.105.142.0/23 193.4.164.231 * * 0x06 (TCP) a3

R4 95.105.143.51 204.13.220.0/22 * * 0x01 (ICMP) a4

R5 95.105.143.6 192.206.76.132 * * * a3

R6 0.0.0.0/0 0.0.0.0/0 * * 0x01 (ICMP) a4

R7 0.0.0.0/0 0.0.0.0/0 * * * a5

Rulesets Data 
structure

Hardware

Algorithm

(a) Decision tree dedicated

Rulesets Data 
structure

Algorithm

Hardware

(b) Adaptive architecture HACL
Fig. 1. The methodology of designing for two different architectures.

in traditional switches for ACL in the industry [9] [10],
is capable of achieving high throughput and ultra-low
latency. However, this comes at the expense of limited
capacity, high chip area, and high power consumption.
Meanwhile, the atomicity and high cost of rule updating
are two other big challenges for TCAM [11]. For traditional
routers/switches widely used in regular backbone net-
works and enterprise campuses, TCAM is sufficient to cope
with their small ACL scales. However, the above reasons
make TCAM unsuitable for large-scale ACL scenarios in
virtualized cloud data centers in recent years.

FPGA-based SmartNIC opens up a myriad of possibili-
ties owing to its flexibility and parallelism [12]. Notably, in
the realm of ACL, there has been a surge of FPGA designs
in recent years. However, it is imperative to acknowledge
the limitations of previous solutions such as the BitVector
(BV)-based [13] [14] or hash-based [15] approaches, which
unfortunately only support approximately 1K-scale rules
and require the hardware architecture to be reset for rule
updates. In contrast, decision-tree-based algorithms are
proven to be highly suitable in scenarios characterized by
large rulesets and high-performance requirements.

Previous FPGA decision-tree designs can be catego-
rized into two main groups: fixed-pipeline [16] [17] and
non-pipeline [18] [19]. However, these designs have certain
limitations that hinder their practicality. Fixed-pipeline
designs face a challenge when the number of nodes at
a certain level exceeds the preallocated capacity. This
limitation prevents the system from accommodating rule
updates, restricting its flexibility. On the other hand, non-
pipeline designs mainly employ Run-to-Completion (RTC)
technique, whose throughput drops sharply when the
depth of the tree is high. The design paradigm of previous
decision tree dedicated architectures is shown in Fig. 1a:
the ruleset first determines the data structure, which in
turn determines the hardware architecture. This paradigm
highlights the limitation that none of the current FPGA
designs offer the necessary flexibility to accommodate var-
ious rulesets without requiring hardware reconfiguration.
This lack of adaptability hampers their usability in real-
world applications with dynamic rule requirements.
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Fig. 2. An example decision tree for Table 1.

In this paper, we propose HACL, a Heterogeneous
and Adaptive ACL engine that utilizes the decision tree
approach on FPGA-based SmartNICs. Unlike previous
FPGA designs, we have adopted a completely innovative
paradigm, as depicted in Fig. 1b. The architecture is built
based on the potential characteristics of rulesets that may
need to be accommodated, and it supports arbitrary data
structures generated by various decision tree algorithms,
as long as there is sufficient memory space. Besides its high
flexibility, HACL can provide a higher rule capacity than
TCAM and a throughput far exceeding that of the CPU.
It also reduces the processing pressure on the back-end
engine through the cache design of hit rules. The major
contributions are summarized as follows:

• We propose a heterogeneous architecture that takes
advantage of both pipeline and RTC technique.
HACL leverages the recirculation of a pipeline to
adapt to the variation of decision tree depth. Each
pipeline node supports both cutting and splitting
method for the construction of decision trees.

• We also develop a heterogeneous framework in
which, in addition to HACL on the FPGA platform,
there is a software compiler based on the CPU
platform that can effectively map decision trees to
different types of FPGA pipeline modules.

• We implement HACL on a typical SmartNIC, Xil-
inx U50, and the evaluation demonstrates that the
resource requirement of HACL is pretty low, and
HACL achieves over 260Mpps (Million packets per
second) throughput for various 100K rulesets.

The paper is organized as follows. We briefly introduce
the decision-tree algorithm in § 2 and related work in § 3.
Then we elaborate the design of HACL including FPGA
architecture and compiler in § 4 and § 5. We illustrate
some evaluation results to verify the feasibility and high
performance of HACL in § 6.

2 BACKGROUND

The ACL matching problem belongs to the area of multi-
field packet classification [20] [21]. The goal is to classify
network traffic by comparing d fields of packet headers to
a predefined ruleset. A ruleset R consists of the ordered
rules: r1 < r2 < . . . < rn. Each rule is described by a
cartesian product of d fields, i.e.,

ri = F i
1 × F i

2 × . . .× F i
d (1)

where F i
j represents a finite set on the packet j-th header

field. F i
j can be expressed by prefix, range, or exact value,

which are all continuous on the integer domain. A rule ri
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Fig. 3. Number of nodes (intermediate and leaf nodes) at different layers in the tree built using CutSplit for various ACL rulesets.
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can be viewed as a specific hypercube in the space with
d fields. When a packet with the header (v1, v2, . . . , vd) is
classified, the engine would find the matched rule with the
highest order. Note that ACL configuration constraints do
not allow rules with the same order (or priority) to appear.
All matched rules can be expressed as a set

R′ = {rk|rk ∈ R; vj ∈ F k
j ,∀j = 1, 2, . . . , d} (2)

and the final matching result is the rule with the highest
priority:

r̂ : ∀rk ∈ R′ and rk ̸= r̂, r̂ < rk (3)

For the decision tree classification algorithm, a corre-
sponding typical decision tree is depicted in Fig. 2 for the
ACL ruleset in Table 1. When the classifier lookups the
matched result of a packet, it reads the required field of the
packet and decides where to go for the next node until
it reaches a leaf node. Then the classifier would search
linearly against the leaf rules. For example, if a packet in-
cludes the 5-tuple header (95.105.143.6, 192.206.76.132, 20,
40, 0x06), the classifier would first judge if the protocol field
(the 5th field) is equal to 0x01 according to the requirement
of the root node. As the protocol field value is 0x06, the
classifier would go to the far right and then read the 1th
and 6th bit of Addrdst (the 2nd field) to determine the next
direction. The value of Addrdst is ‘00’, so it compares the
packet against both R5 and R7 to get the matched result
with the highest priority, R5.

Different algorithms potentially build different trees
based on their heuristic observations and the operations at
nodes could be various. For example, HiCuts [22] chooses
several continuous bits of one selected dimension to cut
the packet header; HyperCuts [23] and EffiCuts [24] use
the combination of a few continuous bits from several
dimensions; while BitCuts [25] picks several discrete bits.
HyperSplit [16] and SmartSplit [26] compare the field value
with a specific value to split to reduce the size of the
decision tree. CutSplit [20] and ByteCuts [27] allow cut
or split operations within a node to further expand the
decision space and build better trees at lower depths.

This diversity in decision tree structures emphasizes the
complexity and variability of ACL rulesets and highlights
the need for adaptable hardware that can effectively handle
diverse rule configurations. Fig. 3 displays the number of
tree nodes across different layers within a tree constructed
using CutSplit for various ACL rulesets. Note that the
term “nodes” encompasses both intermediate nodes and
leaf nodes in this context. One notable observation is
that even when dealing with rulesets containing the same
number of rules, the decision trees produced by the same
algorithm exhibit significant variations. This observation is
not limited to CutSplit alone; it extends to other algorithms
such as HiCuts, EffiCuts and other methods as well.

3 RELATED WORK

When running in a CPU-DRAM environment, the uncer-
tainty of the tree depth and the diversity of node counts
are not an issue. Memory can be dynamically allocated for
different levels of the tree. However, if we want to fully
utilize the parallel and pipelined processing capabilities
in an FPGA, diversity becomes a major issue. According
to the characteristics of hardware, FPGA designs based
on decision trees can be mainly divided into two kinds:
fixed pipeline and non-pipeline. Fig. 4 compares fixed-
pipeline and non-pipeline mechanisms through a node
search example with a depth of 3.

Fixed-pipeline architectures account for the majority
of decision-tree-based FPGA designs, and representative
works include ParaSplit [16], CubeCuts [28], REC [29], and
MBitTree [30]. As shown in Fig. 4, the tree node informa-
tion is distributed in multiple SRAMs corresponding to dif-
ferent pipeline stages, and results are output every cycle so
that classification throughput is directly linear to operating
frequency. However, the number of pipeline stages will be
determined according to the data structure generated by
the specific ruleset. If the compiled tree depth is larger
than preallocated, the FPGA must be reconfigured, which
makes the ruleset update unavailable in this scenario.
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TABLE 2
ACL engine on FPGA

Architecture Rule Classification
Capacity Update Throughput Latency

Fixed pipeline [16] [17] [32] Low Hard High Low
Non pipeline [18] [19] [31] High Easy Low Uncertain

HACL (Heterogeneous) High Easy High Low

For non-pipelined designs based on decision trees, such
as UTPC [18], TcbTree [19], and KickTree [31], they adopted
a flexible approach of storing all nodes at different levels
of a tree in a single SRAM. This method can accommo-
date nodes of various rulesets without reconfiguration
and breaks the limit of tree depth, which is much more
versatile than the fixed-pipeline counterparts. However,
different nodes would be accessed in a serial manner, so
that the throughput is limited to B

Dpps where B is the
SRAM frequency and D is the tree depth, abandoning the
FPGA advantages. For example, assuming that the FPGA
operates at 300MHz, the SRAM can be read 3 ∗ 108 times
per second. As in Fig. 4, if the depth of the tree is 3, it
means that the SRAM needs to be accessed sequentially
up to 3 times to get a result, then the number of results
can be computed per second is 3 ∗ 108/3 = 1 ∗ 108 times,
corresponding to a minimum throughput of 100Mpps,
which is 1/3 of the frequency. This performance gap can
be bridged by duplicating multiple processing cores, which
in turn imposes significant demands on storage resources.
For smaller-capacity FPGAs, it becomes impossible to ac-
commodate multicores, leading to scalability issues with
this method.

Although FPGA-based ACL has been actively investi-
gated for many years, as far as we know, none of them can
achieve both flexibility and high performance at the same
time. Our design HACL is aimed at mapping the decision
trees to one fixed pre-configured FPGA circuit. For a spe-
cific decision-tree algorithm, the structure of multiple trees
is different for various rulesets. They have diverse depths
and various nodes at each level, but they can all be mapped
in HACL. In the preliminary version of this paper [33],
pipelines and non-pipelined linear search units are mixed
and scheduled by a Network-on-Chip (NOC), resulting in a
complex structure and large resource consumption. While
this work fully leverages the advantage of pipelines to
achieve high throughput of classification with a simpler
structure and low hardware resource consumption. By
comparing HACL and existing alternatives in Table 2, it
can be seen that HACL could achieve high rule capacity
and high throughput simultaneously.

4 ARCHITECTURE DESIGN

The fixed-pipeline architecture heavily relies on the ruleset
characteristics, meaning the number of pipeline stages is
determined by the data structure generated from a specific
ruleset. On the other hand, the non-pipeline architecture
faces performance bottlenecks due to centralized storage.
HACL takes the advantages of both approaches, to pro-
vide a certain degree of flexibility while ensuring perfor-
mance. HACL adopts typical grouping and multi-domain
decision-making decision tree algorithms to facilitate the
design of hardware search engines. While achieving high
throughput and high capacity, it is adaptable to various

Compilation 
algorithm 

Ruleset /
rule updates

CPU

Search 
engine FPGA

Packet header

Result

Configure

Input

Output

Fig. 5. The framework of HACL.

rulesets to cope with frequent updates of DCN rules,
preventing the hardware solution from becoming obsolete
after changes to the ruleset.

As shown in Fig. 5, HACL consists of two parts: a
search engine located on the FPGA and a compiler located
on the CPU. The original ruleset or rule updates are input
into the compilation algorithm, which outputs configura-
tions for the search engine. These configurations update
the data structure stored on the search engine. The input
to the search engine is the header of each packet to be
searched, and the output is the ID of the highest priority
matching rule.

4.1 The Search Engine Overall Architecture

As shown in Fig. 6, the HACL search engine architecture
is mainly composed of three parts: Processing Engines
(PEs), Reorder Module, and Cache Module. We need to
consider the versatility of the architecture for decision tree
algorithms. Most of mainstream decision tree algorithms
are based on multiple trees. Rulesets are grouped accord-
ing to the prefix length of each field and each decision
tree is established. Thus multiple PEs in the architecture
correspond to individual decision trees. Each PE contains
multiple Stage Modules (SMs) and Run-to-Completion
Stage Modules (RTC-SMs), which are the core modules
to search rules. It employs a hybrid architecture, where
the majority of decision tree layers are implemented using
pure pipelining, while the unevenly distributed tail nodes
of multiple decision trees are allocated to RTC-SMs.

Although the RTC architecture is generally not consid-
ered suitable for high-performance designs, in this context,
the RTC structure is not directly responsible for the entire
decision tree search; rather, it handles only the final pro-
cessing of tree nodes. This approach significantly conserves
storage space. If the entire decision tree were implemented
using pure pipelining, the sparse distribution of nodes in
the tail layers would lead to substantial storage inefficien-
cies, as large amounts of memory would need to be pre-
allocated, often resulting in underutilization.

To prevent the RTC-SM from becoming a performance
bottleneck, multiple RTC-SMs operate in parallel, thereby
matching the throughput of the preceding pipelined stages.
Unlike previous designs, where each RTC involved redun-
dant node replication, our approach assigns unique nodes
to each RTC-SM module. This method avoids wasting
storage resources and achieves higher resource utilization
compared to a purely pipelined approach.

Moreover, Reorder module is used to merge the output
results of multiple PEs, and the Cache module is used to
improve overall throughput and reduce processing pres-
sure on the SM by utilizing the locality features of the
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packet flow. In the following sections, modules would be
introduced according to the processing flow of packets in
the engine.

4.2 Stage Module

In each PE, multiple SMs are connected in series to form
a pipeline, and each SM corresponds to one of the stages.
When a packet enters the first SM module, the node data
is read from the 0th address of the local storage unit by
default. The node data (shown in Fig. 7) indicates whether
it is an internal node (storing classification operations) or a
rule node (storing a rule). The packet information and the
data stored in the node are combined to calculate the node
address, addrNxt, required for the next step of the packet
lookup process. The rule node determines whether the
rule matches the packet, and updates the matching result
accordingly. Next, the data packet continues forward and
the next SM to be queried is determined based on addrNxt.
The node address, packet information, and matching result
together form the search instruction passed between SMs.
Each SM performs operations based on the input search
instruction and outputs the updated instruction to the next
SM. Multiple levels of SMs form an unobstructed pipeline
structure until the search instruction is finally transmitted
to the RTC-SM. Note that the node address consists of
two parts: module ID and memory address in the module.
This encoding method allows the lookup engine to access
the third SM directly without reading the node on the
second SM, after accessing the first SM. In other words,
an empty operation is performed on the second SM. This
design makes memory allocation on the search engine
more flexible.

4.3 Run-to-Completion Stage Module

Multiple RTC-SM modules are connected after the SM
pipeline. Each RTC-SM has a distinct module ID, and
an RTC-SM is selected to process each search instruction
output by the last level SM. RTC-SM has three First-In-
First-Out (FIFO) queues for caching search instructions.
FIFO-1 caches the input instruction, FIFO-3 caches the
output instruction from RTC-SM. If the node address in the
instruction output by FIFO-3 is 0, then the search process
has ended, and the packet information and matching result
will be output to the backend. If the module ID in the node

address output by FIFO-3 points to the current RTC-SM,
then the instruction will be output to FIFO-2. The SM in
RTC-SM selects and processes the lookup instruction from
FIFO-1 and FIFO-2, and outputs the processing result to
FIFO-3. In this way, packets can be cycled through within
an RTC-SM. The following is an example to illustrate
the working principle of RTC-SM: Assume that RTC-SM
contains only one SM, with the ID SMRamID.

1) An instruction containing the packet pkt reaches
FIFO-1 from the previous pure SM pipeline section, en-
tering the SM via path 1⃝ at the bottom of Fig. 6. Upon
lookup, the SM outputs the address for the next lookup,
addrNxt, which is then input to FIFO-3 via path 2⃝.

2) Subsequently, the value of addrNxt is checked. If it is
not 0, and addrNxt.ramID = SMramID, pkt returns to FIFO-2
through path 4⃝.

3) pkt reenters the SM via path 5⃝, and after lookup,
the SM outputs the address for the next lookup, addrNxt,
which is then input to FIFO-3 via path 2⃝.

4) The value of addrNxt is then checked. It is found to be
0, indicating the end of the lookup process, and the result
is output via path 3⃝.

The recirculation design allows packets to read node
information for any number of times, thereby handling
the situation where “different rulesets require different
numbers of nodes to be read”. The number of RTC-SMs
in each PE is set to 3. Experiments show that this quantity
is sufficient to ensure that the pipeline composed of SMs
will not be suspended in general.

4.4 Search Process

The processing of the search module is illustrated by the
pseudocode in Algorithm 1, with three inputs/outputs.

• The packet information pkt is used to pass the value of
the packet header. The values of multiple fields are treated
as an array pkt.fields, and the total length of the array is 5
for 5-tuple. The SM can select a specific field from it. In
addition, the values of each field are concatenated in order
and can also be viewed as a bit string pkt.bits. The SM can
select a certain bit from it.

• The node address addr is used to pass the address
information of the next node to be accessed, which consists
of two parts: the module number ramID and the memory
address in that module addrInRam. Each SM in the pipeline
has a unique identifier SMRamID, which is used to distin-
guish between different search modules.

• The ruleID is used to pass the ID of the matched rule
during the search process. 0 indicates that no rules match,
and the higher the priority of the rule, the larger the ruleID.

The processing of the SM mainly consists of three steps:

1) Compare whether the input addr belongs to the
current SM (see line 3 in Algorithm 1). If not, all
inputs are forwarded to the next SM. If it belongs,
move on to step 2.

2) Read the corresponding node information from
memory into the register node based on the input
addr (see line 6 in Algorithm 1).

3) Perform different processing based on the node
type, update the output addr and matched rule (see
lines 7-34 in Algorithm 1), and output pkt without
modification.
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Fig. 7. Data structure of different types of nodes stored in the hardware.
Algorithm 1 The search process of Stage Module (SM)
Input: pkt, addr, ruleID, SMRamID
Output: pktNxt, addrNxt, ruleIDNxt
1: procedure SM
2: pktNxt← pkt
3: if addr.ramID != SMRamID then
4: addrNxt← addr; ruleIDNxt← ruleID
5: return
6: // Read node information from the addr.addrInRam to node
7: switch node.type do
8: case NODETYPE RULE // Rule node
9: addrNxt← node.nextAddr

10: // Compare each field of pkt headers with the corresponding range given
by node.rule in parallel

11: if rule matched then
12: ruleIDNxt← max(ruleID, node.ruleID)
13: else
14: ruleIDNxt← ruleID
15: case NODETYPE CUT // Cut node
16: ruleIDNxt← ruleID
17: for i = 0 to 3 do
18: cutBits[i]← pkt.bits[node.cutLoc[i]]
19: if node.isNext[cutBits] == 1 then
20: addrNxt← node.nextAddr + node.offset[cutBits]
21: else
22: addrNxt← 0
23: case NODETYPE SPLIT // Split node
24: ruleIDNxt← ruleID
25: for i = 0 to 2 do
26: cmpFieldVal← pkt.fields[node.splitLoc[i]]
27: if node.cmpVal[i] >= cmpFieldVal then
28: splitBits[i]← 1
29: else
30: splitBits[i]← 0
31: if node.isNext[splitBits] == 1 then
32: addrNxt← node.nextAddr + node.offset[splitBits]
33: else
34: addrNxt← 0

Fig. 7 depicts the data structure of different decision
tree nodes stored in the hardware. The current version of
HACL defines three types of nodes: rule nodes that stores
rules, and two types of nodes that store intermediate node
information: cut nodes and split nodes, which respectively
correspond to two common methods of building decision
trees. More types can be further defined as needed.

The rule node stores detailed information about the
rule and its ID. The SM compares each field of the packet
in parallel to see if it falls within the range defined by the
rule. If all fields match, the packet is considered a match
and the output rule ID is updated. Otherwise, the previous
input rule ID is retained in the output.

The cut node selects up to four bits from pkt.bits,
combines them into cutBits, and uses cutBits as an index
to access the boolean array node.isNext. If isNext[cutBits]
is 1, there will be a next node to visit, and addrNxt is
calculated based on node.nextAddr and node.offset[cutBits].
If isNext[cutBits] is 0, addrNxt is set to 0 (which means the
packet does not match any rule). When addrNxt.ramID is 0,
the packet will not be processed by any subsequent SMs.

The split node selects three fields from the packet
header (which may include duplicates) and compares them
to the three values stored in the node. The results of the
comparisons are concatenated into a 3-bit splitBits, which
is similar to cutBits used in cut nodes.

For the search process of a PE, the best-case scenario is
that the packet completes the search in the pure pipeline
section without entering the RTC-SM module. The worst-
case scenario is that after completing the search in the pure
pipeline section, a packet enters an RTC-SM module and
cycles through it m times to complete the search, where
m is the number of RTC-SM modules. However, HACL
sets up multiple RTC-SM modules to ensure stable overall
performance in various cases.

4.5 Out-of-order Reorder module

RTC-SM completes the final search and outputs the match-
ing results to a FIFO, which is then sent to the Reorder
module. The Reorder module is responsible for aggre-
gating the results from multiple PEs and outputting the
final matching result. In HACL, a ruleset is partioned into
groups and assigned to multiple PEs. Each input packet
is sent to all PEs for search, and each PE will provide a
matching result: whether there is a match and the ID of
the matching rule. To obtain the ID of the highest-priority
matching rule, multiple results (rule IDs) generated in
different PEs for the same packet must be aggregated and
resolved. Although a packet (corresponding to a unique
sequence number) enters each PE simultaneously, the time
it takes to output the result from each PE is different
due to the unpredictable number of iterations within the
RTC-SM. Therefore, the Reorder module aligns the out-
of-order results from different PEs based on the packet’s
sequence number. Note that multiple results generated by
one packet correspond to the same sequence number. The
final matching result output from the Reorder module will
also be fed back to the Cache module at the front of the
search engine to update the corresponding cache entry.

In Fig. 8, three PEs output a series of matching results
respectively. Taking PE-1 as an example, it outputs in turn:
the packet with sequence number 1 matches R1, packet 3
does not match any rules, packet 2 matches R4, and packet
5 matches R1. Since the RTC-SM in Fig. 6 cannot guarantee
the processing delay of packets, although packet 2 is input
to PE-1 first, its output result is after packet 3. The Reorder
module aggregates the results of the three PEs and output
the highest priority matching result. For instance, packet 2
corresponds to outputs of R4 by PE-1, R7 by PE-2, and R3
by PE-3. Then the final result would be R3 which has the
highest priority.
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The out-of-order rearrangement function of HACL has
similarities with the classic Push-In-First-Out (PIFO) [34]
queue scheduling. PIFO rearranges results that do not
arrive in order internally, and the arranged results are
output in ascending order by sequence number. The Re-
order module of HACL can use multiple PIFO queues
to perform reordering on each PE separately, and then
merge the results. However, PIFO maintains elements as
a complex ordered linked list structure or heap structure,
which will occupy a lot of hardware resources and is not
suitable for use in HACL. On the other hand, there is
an upper limit to the number of packets that HACL can
accommodate, which is the sum of three FIFOs in RTC-
SM and all SM modules. If the depth of each FIFO is 64
and there are 3 RTC-SMs and 10 SMs in each PE, then the
maximum number of unmatched packets that the PE can
accommodate is 64*3*3+10*3=606. Therefore, the sequence
number only needs to be encoded using 10 bits, which is
much smaller than the default 16b/32b of PIFO. If PIFO
is directly used in the Reorder module, there will be a lot
of redundancy. In summary, the Reorder module of HACL
needs to be redesigned instead of directly reusing PIFO. In
this work, we propose two schemes to address this issue.
The first scheme is to use a large number of on-chip reg-
isters, which is called the ReorderReg scheme (Fig. 9); the
second solution is to reduce the on-chip register footprint
by doubling the BRAM footprint, called the ReorderRAM
scheme (Fig. 10).

4.5.1 ReorderReg Scheme
As shown in Fig. 9, ReorderReg uses three blocks of RAM,
each with independent read and write functionalities, re-
sponsible for recording the results of the three PEs in
Fig. 8. The packet sequence number is indexed as the
address in RAM, and the matching rule ID is written to
the corresponding position in RAM. For each address,
ReorderReg uses 3 bits (i.e., flag bit) for each address to
record the readiness of the rule ID corresponding to the
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Fig. 10. The ReorderRAM scheme.

current packet. The first three results from Fig. 8 have
been stored in RAM, and the fourth set of results is being
inserted. For example, for the (2, R7) result that PE-2 wants
to insert, its rule ID result R7 is written to the position at
address 2 in the second block of RAM, RAM[1][2] = R7,
and the corresponding flag at position flags[2][1] is set to
True. When the bit values of flags[i] are all True, the results
for the three PEs of the packet with sequence number i
have all been recorded, as shown in flags[1] in Fig. 9.

ReorderReg also has a pointer pointing to the next
packet sequence number to be output, which in Fig. 9
points to sequence number 1. Since flags[1] is all True, if the
backend requests output results at this point, ReorderReg
will read the three results from RAM[0][1], RAM[1][1], and
RAM[2][1] in parallel, then calculate the maximum rule ID
among them, which is R1, and clear flags[1], and move the
pointer to the next position with sequence number 2. If the
current flags are not all True, then the pointer will not move
forward, and ReorderReg will notify the backend that the
data is not yet ready.

In HACL, the packet sequence number increases di-
rectly by 1, and when the number reaches the maximum
value, it returns to 0. Therefore, ReorderReg’s use of RAM
is similar to a circular queue, allowing for the reuse of
RAM. For ReorderReg, each block of RAM is only written
when the corresponding PE outputs a matching result,
and is only read when the result is required. Therefore,
at most one read operation and one write operation can be
performed in each clock cycle, and it can be implemented
using standard dual-port RAM. The entire workflow can
be fully pipelined, meaning that input and output pro-
cessing can be performed on every cycle without block-
ing. Compared to PIFO, ReorderReg uses bucket sorting
instead of insertion sorting, reducing the computational
complexity of insertion and increasing throughput. In ad-
dition, by enforcing sequential output (the matching result
with sequence number 3 must be output after the matching
result with sequence number 2 is output), ReorderReg
eliminates the linked list relationship in PIFO and reduces
the complexity of hardware implementation.

4.5.2 ReorderRAM Scheme
The ReorderRAM scheme is similar to the ReorderReg
design idea, but it utilizes two groups, a total of 6 RAMs
to achieve the same function. In Fig. 10, ReorderRAM
no longer maintains flags, but writes the flag bit infor-
mation and rule ID into the corresponding position of
RAM. The insertion operation of (2, R7) is to directly set
RAM1[1][2]=(True, R7). When outputting the result, Re-
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TABLE 3
Adventurous reading of ReorderRAM (The RAM access latency is 2

clock cycles)

Simple reading
Clock 1 2 3 4 5 6 7 8 9

Request address 10 - - 11 - - 12 - -
Return data - - 10 - - 11 - - 12
Data success - - T - - T - - T

Current pointer 10 10 10 11 11 11 12 12 12
Output result - - 10 - - 11 - - 12

Adventurous reading
Clock 1 2 3 4 5 6 7 8 9

Request address 10 11 12 13 14 15 16 14 15
Return data - - 10 11 12 13 14 15 16
Data success - - T T T T F T F

Current pointer 10 10 10 11 12 13 14 14 14
Output result - - 10 11 12 13 14 - -

orderRAM will read RAM1[0][1], RAM1[1][1], RAM1[2][1]
at the position pointed by the current pointer in parallel. If
all three values are recorded as True, it means the location
is ready to output the final merged result, and the values
of RAM2[0][1], RAM2[1][1] and RAM2[2][1] are simulta-
neously set to (F, 0) to indicate that the location is cleared.
The serial number of the packet in HACL is 10b by default,
and there will be 210 addresses of RAM1. When the serial
number reaches the maximum value and overflows to 0,
ReorderRAM will not directly return to the original 0 of
RAM1 like ReorderReg, but switches to RAM2. Similarly,
when the pointer overflows from the maximum address
of RAM2 to 0, it switches to RAM1. The reason for such
design is that, when input and output exist at the same
time, the input operation will perform a RAM write (the
rule ID result is written to the corresponding position),
the output operation will perform a RAM read (the data
pointed to by the pointer is read) and a RAM Write (clear
the location of successful output). ReorderRAM performs
two RAM writes and one RAM read within one clock, and
operates data of three addresses at the same time. This
operation cannot be realized on a dual-port RAM, thus
ReorderRAM realizes the above functions by operating
two RAMs.

When the backend continues to request data and the
Reorder module needs to do continuous output, Reorder-
RAM has certain disadvantages compared to ReorderReg.
ReorderReg directly judges whether the data of the current
pointer is ready through the register flags, without reading
delay. ReorderRAM needs to wait for the data on the RAM
to return, and there must be a delay from the initiation
of the read command to the return of the data (the read
delay of FPGA’s BRAM/URAM is 1-3 clock cycles). Table
3 illustrates the scenario where the RAM read latency is 2
clock cycles.

The upper table in Table 3 shows a case when Re-
orderRAM does not have any optimization and adopts the
“simple read” strategy. ReorderRAM initiates a request to
read address 10 data in the first cycle, gets the data in the
third cycle, and then judges that the data is ready. Then the
pointer moves to the next position, and ReorderRAM in the
fourth cycle initiate a request to read data at address 11. It
can be seen that under this strategy, ReorderRAM outputs
every 3 clock cycles, and the throughput is very low. To
address this issue, ReorderRAM adopts the “adventurous
read” strategy. After requesting the data of address 10 in
the first cycle, although the current pointer still points to
address 10 in the second cycle, a request for the data of
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Fig. 11. Block diagram of the compiler.

address 11 is initiated, so that the data at address 10 can
be obtained in the third cycle, and the data at address 11
can be obtained in the fourth cycle. If the No. 10 data of
the third cycle and the No. 11 data of the fourth cycle
are ready, the pointer can smoothly move to the next
position until a certain position returns “not fully ready”.
As shown in Table 3, since the No. 14 data returned in
the 7th clock cycle is not ready yet, an adventure failure
occurs, and the pointer is no longer moved. Although the
No. 15 data returned in the 8th cycle is ready, the pointer
of ReorderRAM still stays at the No. 14 position, and the
current returned No. 15 data is discarded. Then the request
to read No. 14 data is re-initiated, followed by a re-initiated
read of No. 15 data in the 9th cycle. By comparison, “simple
read” successfully output 3 data in 9 clock cycles, while
“adventurous read” successfully output 5 data, with a 67%
increase in throughput. Ideally, “adventurous read” can
output data every clock without wasting cycles.

4.6 Cache Module
The Cache module uses the packet header’s 5-tuple value
as the key and the matching rule ID as the value to
construct a fixed-length hash table for lookup. The cache
organization method used is “direct mapping”. The packet
first enters the cache module, which checks whether the
packet hits the cache. If there is a cache hit, the system
directly outputs the matching result, that is, the matching
rule ID; if there is no cache hit, HACL adds a sequence
number to the packet information to indicate the order
of the packet. Then, multiple copies of pkt are sent to n
PEs for parallel processing. The HACL cache replacement
strategy is direct replacement, which means that when
HACL provides a new lookup result, it would replace the
original entry. Subsequent evaluations have shown that
this approach achieves good results.

5 OVERVIEW OF THE COMPILER

The compiler acts as a conduit that seamlessly integrates
decision tree algorithms with HACL hardware. It con-
verts an input ruleset into a hardware-recognizable data
structure file based on design requirement parameters. The
block diagram of the compiler is illustrated in Fig. 11.
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5.1 Workflow of the Compiler

The following describes the working principle of the com-
piler in detail according to its operational sequence.
(1) Generation of Decision Tree Nodes: Based on a given
set of rules, the compiler first builds decision trees based
on a specific algorithm, and then generates the nodes
of the algorithm. Various decision tree algorithms, such
as HyperSplit [35], HyperCuts [23], CutSplit [20], ParaS-
plit [16], BitCuts [25], and ByteCuts [27] that use cut and
split operations can be easily implemented on HACL’s
hardware engine.
(2) Conversion of Tree Nodes to Hardware Nodes: In
this step, the nodes of the algorithmic decision trees are
converted into an encapsulated form suitable for hardware
implementation, where the parameter of node type is used
to distinguish between nodes adopting cut operation or
ones using split operation. The hardware operation types
are then configured according to the algorithm’s settings.
As can be seen from Fig. 11, there is a big difference in the
representation of hardware nodes and algorithm nodes.

This conversion also includes assigning values to each
hardware node structure such as cmpDim (comparison or
cutting dimension), cmpVal (comparison value), location
(cutting location), bitmap (indicating valid nodes), and offset
(offset address relative to base address). The design of
the offset and isNext parameters in the Stage Module (SM)
allows binary trees, ternary trees, quad trees, and even oc-
trees to be directly deployed in HACL without generating
extra empty nodes.
(3) Assignment of Hardware Address for Each Node: This
key step involves allocating addresses for all hardware
nodes. Initially, the input constraints are determined based
on the design requirements, including the depth of the SM
pipeline, the address width of the RTC-SM, the number of
RTC-SM, etc., and more importantly, the capacity limita-
tion of the SM corresponding to each layer. Additionally,
considering the inherent topological relationship between
different SMs, the compiler carefully calculates the storage
address of each node in the hardware.

Specifically, due to the limited number of nodes that
each SM level can accommodate in the search engine (pre-
determined by FPGA resource configuration), the original
data structure converted in the previous step cannot be
directly mapped to the RAM of the hardware engine. In
other words, multiple nodes from the same level of the
decision tree may need to be mapped into different SMs
due to capacity constraints. Furthermore, this mapping
process must consider the parent-child relationship of the
nodes: child nodes must be assigned to the SM or RTC-
SM that comes after their parent nodes’ SM or RTC-SM.
Taking into account the capacity limitations and the afore-
mentioned topological constraints, once the position of the
parent node is determined, the set of available SMs for the
child nodes is also determined.

The node mapping of RTC-SM can be regarded as
ring-shaped SMs. When reaching the end of the RTC-SM
pipeline and the mapping of the deepest node is not yet
completed, the ramID of the address for the next mapped
node will be the ID of the starting SM in the RTC-SM.
It is important to note that HACL tends to allocate fewer
decision tree layers to the RTC-SM, as an excessive number
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Fig. 12. The compilation illustration.

of layers in the RTC-SM will require multiple accesses dur-
ing the packet lookup process, ultimately reducing overall
performance. This process continues until the addresses of
all hardware nodes have been calculated.
(4) Different Levels of Verification: In the previous con-
version steps from algorithm nodes to FPGA nodes, upon
completing the conversion of each node, a verification of
the node’s function is conducted, which involves compar-
ing its search results with those of the algorithmic node.
Similarly, in the step of hardware address allocation, upon
completing the address allocation of all nodes of a com-
plete pipeline, a decision tree function validation is also
performed. Immediate verification at the node and tree
levels effectively ensures the correctness of the compiler’s
functionality.
(5) Mapping to FPGA: Eventually, the node mappings of
multiple trees are printed into multiple files, and then the
file contents are transferred to the FPGA. HACL sets up
a dedicated interface for node updates. The contents of
the tree node mapping files are sequentially written into
the SRAM of each SM and RTC-SM in HACL through
the update interface. Therefore, updating or replacing the
ruleset does not require regenerating the bitstream.
5.2 Address Coding and Assignment Strategy
Address Coding Mode: It is essential to note that the SM
modules within an individual PE are structured to form a
unidirectional cyclic graph. Supposing the parent node is
allocated to the SM module labeled id1, and within HACL,
the address for the child node linked to the same parent is
denoted as baseAddr+offset. This ensures that all child nodes
related to the same parent are located within a single SM
module, and the corresponding SM module id is denoted
as id2. Then starting from id1, id2 must be reachable. Given
the cyclic nature of the graph produced by the SM, trees of
diverse depths can be mapped onto this graph.
Greedy Algorithm for SM Selection: The compiler capi-
talizes on a greedy algorithm, opting selectively for the SM
that is in closest proximity to the parent node. Utilizing
a DFS (Depth First Search) traversal, the addresses for
all nodes are determined sequentially by the compiler. To
wrap it up, the compiler ingeniously amalgamates the de-
cision tree algorithms with the HACL hardware, ensuring
optimized performance and seamless integration.
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TABLE 4
Resource consumption of search engine

Module Configuration LUT
(872K)

FF
(1,743K)

BRAM
(1,344)

URAM
(640)

WNS
(ns)

Max Frequency
(MHz)

Stage module
(SM)

Node address
width

4 1905 3810 0 0 2.337 601.32
5 1905 3810 0 0 2.183 550.36
6 2096 3810 0 0 2.3 588.24
7 1716 3050 5.5 0 2.017 504.29
8 1716 3050 5.5 0 2.003 500.75
9 1717 3050 5.5 0 1.972 493.10
10 1717 3050 5.5 0 2.11 529.10
11 1718 3050 0 3 1.324 373.69
12 1718 3050 0 3 1.532 405.19

SM pipeline
(address width:
1, 3, 5, 7, 9, 11,

12, 12, 12, 12, ...)

Pipeline
depth

4 7222 14471 5.5 0 1.283 368.05
6 10522 20565 11 3 1.059 340.02
8 13825 26659 11 9 1.007 334.11
10 17126 32753 11 15 0.711 304.04
12 20425 38847 11 21 1.148 350.63
14 23725 44941 11 27 0.523 287.60
16 27025 51035 11 33 0.736 306.37
18 30325 57129 11 39 0.551 289.94
20 33627 63223 11 45 0.84 316.46

PE (SM pipeline + 3
RTC-SM, address width:

5, 5, 5, 10, 10,
12, 12,12, 12, ...)

SM pipeline
depth

12 38074 67151 50.5 48 0.813 313.77
14 41383 73265 50.5 54 0.516 287.03
16 44588 79353 50.5 60 0.459 282.41
18 47883 85455 50.5 66 0.402 277.93
20 51187 91549 50.5 72 0.59 293.26

HACL (4 PEs +
ReorderRAM)

SM pipeline depth
(RTC-SM

address width: 10)

10 138025 237692 416 60 0.253 266.88
12 151315 262090 416 84 0.474 283.61
14 164615 286475 416 108 0.389 276.93
16 177682 310750 416 132 0.222 264.69
18 190811 335203 416 156 0.438 280.74
20 203989 359781 416 180 0.176 261.51

SM pipeline depth
(RTC-SM

address width: 12)

10 138090 237715 218 168 0.314 271.30
12 151369 262083 218 192 0.386 276.70
14 164671 286400 218 216 0.454 282.01
16 177767 310848 218 240 0.291 269.61
18 190878 335184 218 264 0.3 270.27
20 204060 359529 218 288 0.328 272.33

5.3 An Compilation Example

According to the later evaluation, hardware resources are
sufficient for a 100K ACL ruleset scenario. Here is an exam-
ple of compiling the ruleset in Table 1 to help understand
the HACL compilation process. The top half of Fig. 12
demonstrates the decision tree data structure generated by
the algorithm for the ruleset. In the bottom half, a possible
mapping result of the decision tree on the hardware search
engine is displayed, with yellow arrows indicating the
node.nextAddr. In the data structure, the children of nodes
2 and 3 are on the same level, but they belong to different
levels in the search engine, which is an adjustment made by
the compilation algorithm (nodes in the same level of the
tree can be mapped to different levels of the SM pipeline). It
is worth noting that the leftmost child nodes of nodes 2 and
3 both contain rule R5, but because they need to compare
different subsequent rules: R6 and R7 respectively, R5 rule
is duplicated and appears on the third and fourth levels
of SM in the search engine with different node.nextAddr.
For R6 and R7 rules, there are no other rules to match
subsequently, so they only appear on the last level of SM
without being duplicated. This design of multiple parent
nodes pointing to the same child node effectively reduces
the storage resource consumption in the search engine.

6 EVALUATION

We use System Verilog language to implement the search
engine with approximately 2,700 lines of code. The com-
pilation algorithm for mapping adjustments of decision
trees is implemented by approximately 1,000 lines of C++
code. The hardware performance evaluation is conducted

by using Xilinx’s Alveo U50 data center acceleration card
equipped with a 16nm UltraScale+ XCVU35P FPGA chip
with 872K LUTs, 1,743K registers, as well as 1,344 36Kb
BRAMs and 640 288Kb URAMs. Hardware resource evalu-
ation is performed with Xilinx Vivado v2020.1. The ACL
rulesets used in the evaluation are generated by Class-
Bench [36], and the network traffic used in the evaluation
of the Cache module is the Internet flow collected by
CAIDA from Equinix NYC in 2019 [37]. This traffic can
simulate the flow situation of datacenter gateways.

6.1 Hardware Resource Envaluation
This section evaluates the detailed resource consumption
of HACL after implementation. The layout and routing
strategy used is “Performance ExtraTimingOpt”. In order
to evaluate HACL as a hardware IP, IO port binding is
not performed. The clock cycle configuration is 4ns, and
the duty cycle is 50%, where WNS (Worst Negative Slack)
represents the worst negative timing margin, LUT is a logic
6-input lookup table, and FF is a register.
6.1.1 Implementation Results
HACL’s architecture is highly parameterized. The parame-
ters such as the SM pipeline depth, the RTC-SM address
width, and the number of PEs are adjustable. They are
defined in the configuration macros of the source code files,
and users can modify the architecture just by changing
the macro values. After modification, the bitstream of
the corresponding architecture needs to be regenerated.
We have separately evaluated the resource utilization and
maximum performance achievable by SM, SM pipeline,
PE, and the overall HACL search engine under different
configurations. The results are shown in Table 4.
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The complete search engine of HACL consists of 4 PE
modules and a ReorderRAM module (4-input). Different
levels of SM and a fixed set of 3 RTC-SM modules with two
sets of address width have been implemented, allowing
for the accommodation of rulesets of various scales. As
the RAM of the SM is configured in dual-port mode, each
SM is equipped with two packet processing channels. One
channel only reads node information from the RAM, while
another channel is responsible for writing information to
RAM when updating, and reading node information from
RAM when not updating to improve the total throughput.

In the pipeline composed of SMs, different SMs utilize
a stepped distribution of address widths. This means that
the address width of each SM increases progressively to
adapt to nodes in different levels. This stepped distribu-
tion effectively utilizes resources, enhancing the flexibility
and performance of the system. The maximum operating
frequency represents throughput, because the pipeline can
run without pauses under the current configuration.

We calculate the capacity using the example of the
HACL configuration with the minimum SM pipeline
depth of 10. The address widths of all stages in the SM
pipeline are: 5, 5, 5, 10, 10, 12, 12, 12, 12, 12, correspond-
ing to storage capacities of: 32 (25), 32, 32, 1024 (210),
1024, 4096 (212), 4096, 4096, 4096, 4096. Adding them
together gives us the corresponding capacity of the SM
pipeline: 32*3+1024*2+4096*5=22.624K. In addition, each
RTC-SM contains 3 SMs, with each stage having an ad-
dress width of 10. Thus, the capacity of three RTC-SMs
is: 1024*3*3=9.216K, and the total capacity of 4 PEs is:
(22.624K+9.216K)*4 ≈ 127K. Similarly, in an HACL con-
figuration with the maximum SM pipeline depth of 20 and
the address width of 12 for RTC-SM, 4 PEs can contain
(32*3+1024*2+4096*(15+3*3))*4 ≈ 401K nodes and rules.
This means that, under various configurations, the search
engine is capable of accommodating ACL rules with a
scale of 100K while delivering throughput performance
exceeding 260Mpps.

Moreover, the logical resource occupation of the max-
imal configuration is only 204,060

872K = 23.4%, the register
occupation is 20.6%, the BRAM is 16.2%, and the URAM
is 45%. The U50 board still reserves a large amount of
space for other modules, and more HACL search engines
can be further deployed to increase the rule capacity or
classification throughput.

6.1.2 Storage Overhead

HACL, ParaSplit [16], TcbTree [19], and KickTree [31] can
all map the data structure of multiple decision trees onto
self-designed hardware (the latter three can only accommo-
date specific types of decision trees, and are less versatile
than HACL), but their storage resource overhead for the
node address encoding varies. The calculation method for
obtaining the address of the next node to be accessed in
ParaSplit is node.nextAddr + cutBits, which causes ParaSplit
to still consume a node’s storage space for an empty child
node. TcbTree saves the exact address of each child node
on the node, avoiding the storage occupied by empty
nodes and allowing child nodes to appear in different
RAMs. However, the fixed address width of TcbTree results
in excessive storage overhead, as each address occupies
20bit, and the total overhead of the octree’s child node
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Fig. 13. The storage overhead of hardware address encoding of HACL
compared to other designs.

TABLE 5
The resource consumption of Reorder Module

Module Input
num LUT FF BRAM WNS

(ns)

Max
Frequency

(MHz)

ReorderReg
(address width:

10)

2 20 20 2 2.564 696.38
4 7042 4225 4 0.527 287.94
8 11733 8348 8 0.625 296.30

ReorderRam
(address width:

10)

2 115 63 4 1.961 490.44
4 306 126 8 1.568 411.18
8 572 222 16 1.549 408.00

addresses reaches 8*20b=160b. HACL utilizes the base
address node.nextAddr plus the offset to determine the
position of the child node. Since the length of the offset
is much shorter than nextAddr, the storage overhead is
smaller than that of TcbTree, and it also avoids the storage
overhead of empty nodes.

Fig. 13a shows the storage overhead of hardware ad-
dress encoding of HACL compared to ParaSplit and Tcb-
Tree/KickTree under multiple ACL rulesets. The storage
overhead here refers to the pure storage consumption of
all nodes and rules without considering hardware redun-
dancy, in which rule nodes, cut nodes, and split nodes
are calculated separately. This can intuitively reflect the
advantages and disadvantages of different encoding and
addressing schemes. The storage overhead of HACL on 1K,
10K, and 100K rulesets is 0.19 - 0.25Mb, 2.20 - 2.30Mb, and
14.1 - 20.5Mb, respectively. The storage overhead increases
linearly with the number of rules.

Fig. 13b depicts the ratio of additional storage overhead
compared to the original ruleset. The additional storage
overhead refers to the address index information in the
decision tree data structure (only intermediate nodes, ex-
cluding rules) for hardware. Compared to the storage size
of the original ruleset, the additional storage overhead
brought by HACL is around 20%, while ParaSplit has a
maximum additional storage overhead ratio of 150%, and
that for TcbTree and KickTree reaches 50%. HACL always
has lower storage overhead than ParaSplit, TcbTree and
KickTree, and on the 100K ruleset, HACL can save up to
4Mb of storage space compared to the latter three.

6.1.3 Reorder Module

It is mentioned in § 4.5 that the Reorder module can be
realized by the existing PIFO design, but a single PIFO
needs to consume 140K LUT resources when accommodat-
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TABLE 6
Comparison of decision tree based approaches on FPGA

Ruleset
Scale Approach Device Resource consumption Classification

Throughput (MPPS) AdaptiveLUT Registers BRAM URAM

100K

Proposed HACL UltraScale+ XCVU35P 190811 335203 416 156 280.74 ✓
KickTree Systolic [39] Ultrascale+ VU9P 506670 550812 1836 936 121.40 ×

TcbTree [19] Ultrascale+ VU9P 66834 111719 990 792 45.6 ×
KickTree Parallel [31] Ultrascale+ VU9P 607596 819039 1815 762 172.9 ×

MBitTree on FPGA [30] Virtex-7 XC7V690T 37828 75656 818 0 175.9 ×

10K

REC [29] Virtex-5 XC5VFX200T 7044 \ 173 0 323.5 ×
Virtex-6 XC6VLX760 7044 \ 173 0 388.2 ×

UTPC [18] Stratix III EP3SE260H780 40070 \ 852 0 433 ×
D2BS [40] Virtex-5 XC5VSX240T \ \ \ \ 263.7 ×

Hypercuts on FPGA [41] Virtex-5 XC5VFX200T 10307 \ 407 0 250.7 ×
ParaSplit [16] Virtex-5 XC5VSX240T 48380 \ 399 0 200.4 ×
CubeCuts [28] Virtex-5 XC5VFX200T 45656 \ 195 0 368.8 ×

Hypersplit on FPGA [42] Virtex-6 XC6VLX760 2988 5976 103 0 230.5 ×

TABLE 7
Statistical characteristics of CAIDA data set

No. #Packets #Flows #Packets in the largest flow

1 2,620,909 176,545 17,053
2 2,517,685 176,266 16,499
3 2,530,158 177,734 15,974
4 2,518,856 175,956 13,092
5 2,530,680 175,806 15,594
6 2,517,752 174,663 16,463
7 2,515,396 173,449 16,765
8 2,501,781 173,972 16,448
9 2,493,844 172,686 17,329
10 2,465,020 173,883 17,491

ing 1K units, and 512 units correspond to 70K LUT [38].
The hardware resource occupation of ReorderRAM and
ReorderReg under 1K capacity with different input num-
bers is shown in Table 5. The LUT resource consumption of
ReorderReg with four inputs is only 5% of PIFO, and Re-
orderRAM’s is only 0.22%. On the other hand, the LUT and
Register consumption of ReorderRAM is only 4.3% and 3%
of ReorderReg (four inputs). Compared with ReorderReg,
ReorderRAM has a higher operating frequency, but its
BRAM consumption is doubled. Based on the above facts,
it seems that ReorderRAM would be a more suitable choice
as the out-of-order Reorder module for HACL. However, if
there are limitations on the availability of BRAM resources,
ReorderReg can be considered as an alternative option.

6.2 Performance Comparison

Table 6 shows the comparison of performance and resource
consumption between HACL and other decision tree based
schemes. We choose the HACL configuration with SM
pipeline depth of 18 for comparison, as this configuration
can provide sufficient adaptability. Note that all perfor-
mance data compared are from the cited works.

There are five designs capable of supporting 100K rules,
in which HACL has achieved the best performance re-
sults. Compared with the up-to-date KickTree Systolic de-
sign [39], the throughput of HACL is more than twice that
of it. Since the latest approaches take advantage of FPGAs
equipped with URAMs, they cannot be accommodated
by the previously adopted platforms such as Virtex-5/6.
Furthermore, many previous designs do not support large-
scale rules and only adopt 10K ACL as the benchmark.
Although their throughput can reach very high values,
the low ruleset size limits their applicability. The most
important thing is that among the comparison objects, only
HACL is a versatile architecture that can provide adaptiv-
ity to support multiple algorithms and various decision
tree sizes without the need of architecture regeneration.

6.3 Cost Performance Comparison

We also compare the software solutions in DCN and HACL
from the perspective of cost performance. HP’s cabinet
server, the HPE ProLiant DL360 Gen10, with an Intel dual-
socket Xeon Gold 6248/2.5 GHz (3.9 GHz), is priced at US
$15,057, according to quotes from zones.com. The machine
has a total of 40 cores and 80 threads. Even according to
the single-thread optimal throughput of 2Mpps, the entire
machine can only provide 160Mpps throughput, and the
average cost of 1Mpps is US $94. The U50 network card
used in the evaluation of HACL in this article is quoted
at US $4,650 on this website, and the server that the
network card is plugged into can be chosen as a model with
mediocre performance. If the server is a single-socket Intel
Xeon Gold 5218/2.3 GHz (3.9 GHz), the price is US $4,900.
After comprehensive consideration, the 1Mpps of HACL
costs US $38.2, which saves 60% of the cost. In addition,
the server where the U50 is located and the remaining
resources of the U50 can be used for other services of the
gateway, thus the actual average cost will be lower.

6.4 Performance Improvements from Caching

This section evaluates the Cache module of HACL, which
proves that the current design has a good performance im-
provement. Different from OvS’s complex megaflow cache
system [43], HACL’s Cache module essentially performs
the lookup and update process of the hash table.

The CAIDA traffic is divided into 10 groups in chrono-
logical order, and the duration of each group of traffic is
5-10s. Table 7 shows some statistical characteristics of the
10 groups of traffic. It can be seen that the 10 groups of data
are very similar in the number of flows and the number of
packets of the largest flow. In other words, each test set can
still well reflect the overall characteristics of CAIDA traffic,
and will not affect the evaluation effect due to the shorter
traffic data after segmentation.

Fig. 14 shows the box plot of the cache hit rate un-
der different cache entry capacities. Each box reflects the
maximum, minimum, and median hit rates of all traffic
groups under a specific cache size. In general, the hit rate
has increased from an average of 3.28% under 4 cache
entries to 82.1% under 64K cache entries. The growth rate
is gradually slowing down (note that the horizontal and
vertical coordinates of Fig. 14 are logarithmic scales). The
mechanism behind this lies in the power-law distribution
of traffic. A small number of large flows have more packets,
and a certain cache can greatly reduce the pressure on
the backend. We chose a cache entry size of 256 in the
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Fig. 14. HACL cache hit ratio.

implementation as it serves as a reasonable trade-off point.
First, it imposes relatively low resource consumption, and
second, the growth rate in hit rate slows down as the num-
ber of entries continues to increase. When larger caches
are used, the LUT and Register overhead does not increase
much, but the RAM overhead increases exponentially.

It is worth noting that the Cache module can only
reduce the pressure on the backend (some packets need to
access RTC-SM multiple times), and improve the average
throughput, but for instantaneous burst traffic, the cache
may be completely invalid, and a large number of packets
are queued for backend processing. Thus, it cannot be
taken for granted that the hit rate of 80% can increase the
throughput to 250Mpps

1−80% = 1.22Gpps. From the perspective
of queuing theory, in order to ensure that the queue length
is controlled within a certain range, the arrival rate of tasks
must be less than the expected processing capacity.

Under 2K entries, the cache hit rate is about 50%, but
if the CAIDA traffic is continuously injected at a rate of
375Mpps (1.5 times the processing capacity of the backend
250Mpps), the backend queue will exceed 3000 packets at
most, resulting in FIFO overflow. If injected at a rate of
325Mpps (1.3 times the back-end processing capacity), the
back-end queue length is at most 100 packets, resulting in
an additional 400ns queue delay, which is equivalent to
HACL’s own 500ns processing delay. On the other hand,
caching can only enhance performance in specific scenarios
and is suitable for some scenarios with elephant flows.

7 CONCLUSION

In this paper, we design and implement a heterogeneous
and adaptive architecture for fast ACL engine on FPGA-
based SmartNIC, based on decision tree algorithm. In the
aspect of performance, the ACL engine can achieve at least
260Mpps throughput for 100K-scale ACL rulesets. In the
aspect of adaptivity, it supports the arbitrary ruleset update
because it could allow any depth of decision trees with
a small sacrifice of average throughput. With extensive
experimental evaluations, we demonstrate the feasibility
of our FPGA architecture and the compilation algorithm.
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