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Abstract—Access Control Lists (ACLs) are crucial for ensuring
the security and integrity of modern cloud and carrier networks
by regulating access to sensitive information and resources.
However, previous software and hardware implementations no
longer meet the requirements of modern datacenters. The emer-
gence of FPGA-based SmartNICs presents an opportunity to
offload ACL functions from the host CPU, leading to improved
network performance in datacenter applications. However, pre-
vious FPGA-based ACL designs lacked the necessary flexibility
to support different rulesets without hardware reconfiguration
while maintaining high performance. In this paper, we propose
HACL, a heterogeneous and adaptive architecture for decision-
tree-based ACL engine on FPGA. By employing techniques
such as tree decomposition and recirculated pipeline scheduling,
HACL can accommodate various rulesets without reconfiguring
the underlying architecture. To facilitate the efficient mapping of
different decision trees to memory and optimize the throughput
of a ruleset, we also introduce a heterogeneous framework
with a compiler in CPU platform for HACL. We implement
HACL on a typical SmartNIC and evaluate its performance.
The results demonstrate that HACL achieves a throughput
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exceeding 260 Mpps when processing 100K-scale ACL rulesets,
with low hardware resource utilization. By integrating more
engines, HACL can achieve even higher throughput and support
larger rulesets.

Index Terms—ACL, SmartNIC, FPGA, pipeline, parallel
processing.

I. INTRODUCTION

ACCESS Control List (ACL) is a security mechanism used
to manage access to resources and prevent unauthorized

access based on predetermined rules, which can lead to data
breaches, security threats, and loss of confidential information
[1]. In modern networks, ACL is an essential tool for enforcing
security policies and regulations, which is crucial for ensuring
the confidentiality, integrity, and availability of information as-
sets. A typical ACL ruleset is shown in Table I. For each packet,
the classifier engine searches the ruleset and outputs the action
of the highest-priority rule matched for subsequent processing.

With the trends of software-defined networking (SDN) and
programmable networking, SmartNIC is emerging as a promis-
ing unit for offloading network functions from server CPUs [2].
In modern datacenter networks (DCNs), there are several key
requirements for a high-performance SmartNIC ACL engine
compared to traditional ones: 1) Ample rule capacity which can
accommodate over 100K rules, to account for the multitude of
tenants in a cloud datacenter or the extensive user equipment
in a carrier network. 2) Ability to update rulesets, due to the
fact that the virtual functions of the network protocol stack in
datacenters can be updated frequently. 3) High traffic through-
put, to keep pace with the rising adoption of 100GbE NICs and
the recent introduction of 400GbE NICs in modern datacenters.
4) Low classification latency, to avoid directly extending the
completion time for services, as the ACL engine is one step of
end-to-end network processing.

There are three primary hardware compositions utilized in
SmartNICs: multi-core processors, specific ASICs, and FPGAs.
Multi-core processors [3], known for their flexibility, can update
the ruleset and expand capacity (supporting 100K+ rules) using
software libraries like DPDK or Hyperscan, without relying on
specific rulesets. However, handling 100Gbps traffic with multi-
core processors requires a significant number of CPU cores.
Running a recently-proposed popular algorithm [4] consumes
more than 30 cores, and the throughput is limited by DRAM
bandwidth under large rulesets [5].
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TABLE I
EXAMPLE ACL RULES

Id Addrsrc Addrdst Portsrc Portdst Protocol Action

R1 175.77.88.155 119.106.158.230 * 80 0x06 (TCP) a1

R2 95.105.143.33 144.209.187.155 * 27400 0x06 (TCP) a2

R3 95.105.142.0/23 193.4.164.231 * * 0x06 (TCP) a3

R4 95.105.143.51 204.13.220.0/22 * * 0x01 (ICMP) a4

R5 95.105.143.6 192.206.76.132 * * * a3

R6 0.0.0.0/0 0.0.0.0/0 * * 0x01 (ICMP) a4

R7 0.0.0.0/0 0.0.0.0/0 * * * a5

The ASIC-based SmartNIC, such as the NVIDIA ConnectX
series [6], can have a programmable data path that is rela-
tively simple to configure. However, this functionality is con-
strained by predefined functions within the ASIC [7], [8].
TCAM (Ternary Content Addressable Memory), a traditional
and dominant ASIC solution used in traditional switches for
ACL in the industry [9], [10], is capable of achieving high
throughput and ultra-low latency. However, this comes at the
expense of limited capacity, high chip area, and high power
consumption. Meanwhile, the atomicity and high cost of rule
updating are two other big challenges for TCAM [11]. For
traditional routers/switches widely used in regular backbone
networks and enterprise campuses, TCAM is sufficient to cope
with their small ACL scales. However, the above reasons make
TCAM unsuitable for large-scale ACL scenarios in virtualized
cloud data centers in recent years.

FPGA-based SmartNIC opens up a myriad of possibilities
owing to its flexibility and parallelism [12]. Notably, in the
realm of ACL, there has been a surge of FPGA designs in recent
years. However, it is imperative to acknowledge the limitations
of previous solutions such as the BitVector (BV)-based [13]
[14] or hash-based [15] approaches, which unfortunately only
support approximately 1K-scale rules and require the hardware
architecture to be reset for rule updates. In contrast, decision-
tree-based algorithms are proven to be highly suitable in sce-
narios characterized by large rulesets and high-performance
requirements.

Previous FPGA decision-tree designs can be categorized into
two main groups: fixed-pipeline [16], [17] and non-pipeline
[18], [19]. However, these designs have certain limitations that
hinder their practicality. Fixed-pipeline designs face a chal-
lenge when the number of nodes at a certain level exceeds
the preallocated capacity. This limitation prevents the system
from accommodating rule updates, restricting its flexibility. On
the other hand, non-pipeline designs mainly employ Run-to-
Completion (RTC) technique, whose throughput drops sharply
when the depth of the tree is high. The design paradigm of pre-
vious decision tree dedicated architectures is shown in Fig. 1(a):
the ruleset first determines the data structure, which in turn
determines the hardware architecture. This paradigm highlights
the limitation that none of the current FPGA designs offer the
necessary flexibility to accommodate various rulesets without
requiring hardware reconfiguration. This lack of adaptability
hampers their usability in real-world applications with dynamic
rule requirements.

Fig. 1. The methodology of designing for two different architectures.

In this paper, we propose HACL, a Heterogeneous and
Adaptive ACL engine that utilizes the decision tree approach
on FPGA-based SmartNICs. Unlike previous FPGA designs,
we have adopted a completely innovative paradigm, as depicted
in Fig. 1(b). The architecture is built based on the potential
characteristics of rulesets that may need to be accommodated,
and it supports arbitrary data structures generated by various
decision tree algorithms, as long as there is sufficient memory
space. Besides its high flexibility, HACL can provide a higher
rule capacity than TCAM and a throughput far exceeding that of
the CPU. It also reduces the processing pressure on the back-
end engine through the cache design of hit rules. The major
contributions are summarized as follows:

• We propose a heterogeneous architecture that takes advan-
tage of both pipeline and RTC technique. HACL leverages
the recirculation of a pipeline to adapt to the variation
of decision tree depth. Each pipeline node supports both
cutting and splitting method for the construction of deci-
sion trees.

• We also develop a heterogeneous framework in which,
in addition to HACL on the FPGA platform, there is a
software compiler based on the CPU platform that can
effectively map decision trees to different types of FPGA
pipeline modules.

• We implement HACL on a typical SmartNIC, Xilinx U50,
and the evaluation demonstrates that the resource require-
ment of HACL is pretty low, and HACL achieves over
260Mpps (Million packets per second) throughput for var-
ious 100K rulesets.

The paper is organized as follows. We briefly introduce the
decision-tree algorithm in Section II and related work in Section
III. Then we elaborate the design of HACL including FPGA
architecture and compiler in Section IV and Section V. We
illustrate some evaluation results to verify the feasibility and
high performance of HACL in Section VI.

II. BACKGROUND

The ACL matching problem belongs to the area of multi-
field packet classification [20], [21]. The goal is to classify
network traffic by comparing d fields of packet headers to a pre-
defined ruleset. A ruleset R consists of the ordered rules: r1 <
r2 < . . . < rn. Each rule is described by a cartesian product
of d fields, i.e.,

ri = F i
1 × F i

2 × . . .× F i
d (1)

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on December 19,2024 at 01:08:31 UTC from IEEE Xplore.  Restrictions apply. 



XIN et al.: HETEROGENEOUS AND ADAPTIVE ARCHITECTURE 265

Fig. 2. An example decision tree for Table I.

where F i
j represents a finite set on the packet j-th header

field. F i
j can be expressed by prefix, range, or exact value,

which are all continuous on the integer domain. A rule ri can be
viewed as a specific hypercube in the space with d fields. When
a packet with the header (v1, v2, . . . , vd) is classified, the engine
would find the matched rule with the highest order. Note that
ACL configuration constraints do not allow rules with the same
order (or priority) to appear. All matched rules can be expressed
as a set

R′ = {rk|rk ∈R; vj ∈ F k
j , ∀j = 1, 2, . . . , d} (2)

and the final matching result is the rule with the highest priority:

r̂ : ∀rk ∈R′ and rk �= r̂, r̂ < rk (3)

For the decision tree classification algorithm, a correspond-
ing typical decision tree is depicted in Fig. 2 for the ACL ruleset
in Table I. When the classifier lookups the matched result of
a packet, it reads the required field of the packet and decides
where to go for the next node until it reaches a leaf node. Then
the classifier would search linearly against the leaf rules. For
example, if a packet includes the 5-tuple header (95.105.143.6,
192.206.76.132, 20, 40, 0x06), the classifier would first judge
if the protocol field (the 5th field) is equal to 0x01 according
to the requirement of the root node. As the protocol field value
is 0x06, the classifier would go to the far right and then read
the 1th and 6th bit of Addrdst (the 2nd field) to determine the
next direction. The value of Addrdst is ‘00’, so it compares the
packet against both R5 and R7 to get the matched result with
the highest priority, R5.

Different algorithms potentially build different trees based on
their heuristic observations and the operations at nodes could be
various. For example, HiCuts [22] chooses several continuous
bits of one selected dimension to cut the packet header; Hy-
perCuts [23] and EffiCuts [24] use the combination of a few
continuous bits from several dimensions; while BitCuts [25]
picks several discrete bits. HyperSplit [16] and SmartSplit [26]
compare the field value with a specific value to split to reduce
the size of the decision tree. CutSplit [20] and ByteCuts [27]
allow cut or split operations within a node to further expand the
decision space and build better trees at lower depths.

This diversity in decision tree structures emphasizes the com-
plexity and variability of ACL rulesets and highlights the need
for adaptable hardware that can effectively handle diverse rule

configurations. Fig. 3 displays the number of tree nodes across
different layers within a tree constructed using CutSplit for vari-
ous ACL rulesets. Note that the term “nodes” encompasses both
intermediate nodes and leaf nodes in this context. One notable
observation is that even when dealing with rulesets containing
the same number of rules, the decision trees produced by the
same algorithm exhibit significant variations. This observation
is not limited to CutSplit alone; it extends to other algorithms
such as HiCuts, EffiCuts and other methods as well.

III. RELATED WORK

When running in a CPU-DRAM environment, the uncer-
tainty of the tree depth and the diversity of node counts are not
an issue. Memory can be dynamically allocated for different
levels of the tree. However, if we want to fully utilize the parallel
and pipelined processing capabilities in an FPGA, diversity
becomes a major issue. According to the characteristics of
hardware, FPGA designs based on decision trees can be mainly
divided into two kinds: fixed pipeline and non-pipeline. Fig. 4
compares fixed-pipeline and non-pipeline mechanisms through
a node search example with a depth of 3.

Fixed-pipeline architectures account for the majority of
decision-tree-based FPGA designs, and representative works
include ParaSplit [16], CubeCuts [28], REC [29], and MBitTree
[30]. As shown in Fig. 4, the tree node information is dis-
tributed in multiple SRAMs corresponding to different pipeline
stages, and results are output every cycle so that classification
throughput is directly linear to operating frequency. However,
the number of pipeline stages will be determined according
to the data structure generated by the specific ruleset. If the
compiled tree depth is larger than preallocated, the FPGA must
be reconfigured, which makes the ruleset update unavailable in
this scenario.

For non-pipelined designs based on decision trees, such as
UTPC [18], TcbTree [19], and KickTree [31], they adopted a
flexible approach of storing all nodes at different levels of a
tree in a single SRAM. This method can accommodate nodes of
various rulesets without reconfiguration and breaks the limit of
tree depth, which is much more versatile than the fixed-pipeline
counterparts. However, different nodes would be accessed in a
serial manner, so that the throughput is limited to B

Dpps where
B is the SRAM frequency and D is the tree depth, abandoning
the FPGA advantages. For example, assuming that the FPGA
operates at 300MHz, the SRAM can be read 3 ∗ 108 times per
second. As in Fig. 4, if the depth of the tree is 3, it means that
the SRAM needs to be accessed sequentially up to 3 times to
get a result, then the number of results can be computed per
second is 3 ∗ 108/3 = 1 ∗ 108 times, corresponding to a min-
imum throughput of 100Mpps, which is 1/3 of the frequency.
This performance gap can be bridged by duplicating multiple
processing cores, which in turn imposes significant demands
on storage resources. For smaller-capacity FPGAs, it becomes
impossible to accommodate multicores, leading to scalability
issues with this method.

Although FPGA-based ACL has been actively investigated
for many years, as far as we know, none of them can achieve
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Fig. 3. Number of nodes (intermediate and leaf nodes) at different layers in the tree built using CutSplit for various ACL rulesets.

Fig. 4. Fixed-pipeline vs. Non-pipeline.

TABLE II
ACL ENGINE ON FPGA

Architecture Rule Classification
Capacity Update Throughput Latency

Fixed pipeline [16], [17], [32] Low Hard High Low
Non pipeline [18], [19], [31] High Easy Low Uncertain

HACL (Heterogeneous) High Easy High Low

both flexibility and high performance at the same time. Our
design HACL is aimed at mapping the decision trees to one
fixed pre-configured FPGA circuit. For a specific decision-tree
algorithm, the structure of multiple trees is different for various
rulesets. They have diverse depths and various nodes at each
level, but they can all be mapped in HACL. In the preliminary
version of this paper [33], pipelines and non-pipelined linear
search units are mixed and scheduled by a Network-on-Chip
(NOC), resulting in a complex structure and large resource
consumption. While this work fully leverages the advantage
of pipelines to achieve high throughput of classification with a
simpler structure and low hardware resource consumption. By
comparing HACL and existing alternatives in Table II, it can
be seen that HACL could achieve high rule capacity and high
throughput simultaneously.

IV. ARCHITECTURE DESIGN

The fixed-pipeline architecture heavily relies on the ruleset
characteristics, meaning the number of pipeline stages is deter-
mined by the data structure generated from a specific ruleset.

Fig. 5. The framework of HACL.

On the other hand, the non-pipeline architecture faces perfor-
mance bottlenecks due to centralized storage. HACL takes the
advantages of both approaches, to provide a certain degree of
flexibility while ensuring performance. HACL adopts typical
grouping and multi-domain decision-making decision tree algo-
rithms to facilitate the design of hardware search engines. While
achieving high throughput and high capacity, it is adaptable to
various rulesets to cope with frequent updates of DCN rules,
preventing the hardware solution from becoming obsolete after
changes to the ruleset.

As shown in Fig. 5, HACL consists of two parts: a search
engine located on the FPGA and a compiler located on
the CPU. The original ruleset or rule updates are input into
the compilation algorithm, which outputs configurations for the
search engine. These configurations update the data structure
stored on the search engine. The input to the search engine is
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Fig. 6. HACL’s search engine architecture diagram.

the header of each packet to be searched, and the output is the
ID of the highest priority matching rule.

A. The Search Engine Overall Architecture

As shown in Fig. 6, the HACL search engine architecture
is mainly composed of three parts: Processing Engines (PEs),
Reorder Module, and Cache Module. We need to consider the
versatility of the architecture for decision tree algorithms. Most
of mainstream decision tree algorithms are based on multiple
trees. Rulesets are grouped according to the prefix length of
each field and each decision tree is established. Thus multiple
PEs in the architecture correspond to individual decision trees.
Each PE contains multiple Stage Modules (SMs) and Run-to-
Completion Stage Modules (RTC-SMs), which are the core
modules to search rules. It employs a hybrid architecture, where
the majority of decision tree layers are implemented using pure
pipelining, while the unevenly distributed tail nodes of multiple
decision trees are allocated to RTC-SMs.

Although the RTC architecture is generally not considered
suitable for high-performance designs, in this context, the RTC
structure is not directly responsible for the entire decision tree
search; rather, it handles only the final processing of tree nodes.
This approach significantly conserves storage space. If the en-
tire decision tree were implemented using pure pipelining, the
sparse distribution of nodes in the tail layers would lead to
substantial storage inefficiencies, as large amounts of memory
would need to be pre-allocated, often resulting in underutiliza-
tion.

To prevent the RTC-SM from becoming a performance bot-
tleneck, multiple RTC-SMs operate in parallel, thereby match-
ing the throughput of the preceding pipelined stages. Unlike
previous designs, where each RTC involved redundant node
replication, our approach assigns unique nodes to each RTC-
SM module. This method avoids wasting storage resources
and achieves higher resource utilization compared to a purely
pipelined approach.

Moreover, Reorder module is used to merge the output results
of multiple PEs, and the Cache module is used to improve

overall throughput and reduce processing pressure on the SM
by utilizing the locality features of the packet flow. In the
following sections, modules would be introduced according to
the processing flow of packets in the engine.

B. Stage Module

In each PE, multiple SMs are connected in series to form a
pipeline, and each SM corresponds to one of the stages. When a
packet enters the first SM module, the node data is read from the
0th address of the local storage unit by default. The node data
(shown in Fig. 7) indicates whether it is an internal node (storing
classification operations) or a rule node (storing a rule). The
packet information and the data stored in the node are combined
to calculate the node address, addrNxt, required for the next
step of the packet lookup process. The rule node determines
whether the rule matches the packet, and updates the matching
result accordingly. Next, the data packet continues forward and
the next SM to be queried is determined based on addrNxt. The
node address, packet information, and matching result together
form the search instruction passed between SMs. Each SM
performs operations based on the input search instruction and
outputs the updated instruction to the next SM. Multiple levels
of SMs form an unobstructed pipeline structure until the search
instruction is finally transmitted to the RTC-SM. Note that the
node address consists of two parts: module ID and memory
address in the module. This encoding method allows the lookup
engine to access the third SM directly without reading the node
on the second SM, after accessing the first SM. In other words,
an empty operation is performed on the second SM. This design
makes memory allocation on the search engine more flexible.

C. Run-to-Completion Stage Module

Multiple RTC-SM modules are connected after the SM
pipeline. Each RTC-SM has a distinct module ID, and an RTC-
SM is selected to process each search instruction output by
the last level SM. RTC-SM has three First-In-First-Out (FIFO)
queues for caching search instructions. FIFO-1 caches the input
instruction, FIFO-3 caches the output instruction from RTC-
SM. If the node address in the instruction output by FIFO-3 is
0, then the search process has ended, and the packet information
and matching result will be output to the backend. If the module
ID in the node address output by FIFO-3 points to the current
RTC-SM, then the instruction will be output to FIFO-2. The
SM in RTC-SM selects and processes the lookup instruction
from FIFO-1 and FIFO-2, and outputs the processing result to
FIFO-3. In this way, packets can be cycled through within an
RTC-SM. The following is an example to illustrate the working
principle of RTC-SM: Assume that RTC-SM contains only one
SM, with the ID SMRamID.

1) An instruction containing the packet pkt reaches FIFO-
1 from the previous pure SM pipeline section, entering
the SM via path ©1 at the bottom of Fig. 6. Upon lookup,
the SM outputs the address for the next lookup, addrNxt,
which is then input to FIFO-3 via path ©2 .
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Fig. 7. Data structure of different types of nodes stored in the hardware.

2) Subsequently, the value of addrNxt is checked. If it is not
0, and addrNxt.ramID = SMramID, pkt returns to FIFO-2
through path ©4 .

3) pkt reenters the SM via path ©5 , and after lookup, the SM
outputs the address for the next lookup, addrNxt, which
is then input to FIFO-3 via path ©2 .

4) The value of addrNxt is then checked. It is found to be 0,
indicating the end of the lookup process, and the result is
output via path ©3 .

The recirculation design allows packets to read node infor-
mation for any number of times, thereby handling the situation
where “different rulesets require different numbers of nodes
to be read”. The number of RTC-SMs in each PE is set to
3. Experiments show that this quantity is sufficient to ensure
that the pipeline composed of SMs will not be suspended in
general.

D. Search Process

The processing of the search module is illustrated by the
pseudocode in Algorithm 1, with three inputs/outputs.

• The packet information pkt is used to pass the value of the
packet header. The values of multiple fields are treated as
an array pkt.fields, and the total length of the array is 5
for 5-tuple. The SM can select a specific field from it. In
addition, the values of each field are concatenated in order
and can also be viewed as a bit string pkt.bits. The SM can
select a certain bit from it.

• The node address addr is used to pass the address informa-
tion of the next node to be accessed, which consists of two
parts: the module number ramID and the memory address
in that module addrInRam. Each SM in the pipeline has a
unique identifier SMRamID, which is used to distinguish
between different search modules.

• The ruleID is used to pass the ID of the matched rule
during the search process. 0 indicates that no rules match,
and the higher the priority of the rule, the larger the ruleID.

The processing of the SM mainly consists of three steps:
1) Compare whether the input addr belongs to the current

SM (see line 3 in Algorithm 1). If not, all inputs are
forwarded to the next SM. If it belongs, move on to
step 2.

Algorithm 1 The search process of Stage Module (SM)
Input: pkt, addr, ruleID, SMRamID
Output: pktNxt, addrNxt, ruleIDNxt
1: procedure SM
2: pktNxt ← pkt
3: if addr.ramID != SMRamID then
4: addrNxt ← addr; ruleIDNxt ← ruleID
5: return
6: // Read node information from the addr.addrInRam to node
7: switch node.type do
8: case NODETYPE_RULE // Rule node
9: addrNxt ← node.nextAddr

10: // Compare each field of pkt headers with the corresponding range given
by node.rule in parallel

11: if rule matched then
12: ruleIDNxt ← max(ruleID, node.ruleID)
13: else
14: ruleIDNxt ← ruleID
15: case NODETYPE_CUT // Cut node
16: ruleIDNxt ← ruleID
17: for i = 0 to 3 do
18: cutBits[i] ← pkt.bits[node.cutLoc[i]]
19: if node.isNext[cutBits] == 1 then
20: addrNxt ← node.nextAddr + node.offset[cutBits]
21: else
22: addrNxt ← 0
23: case NODETYPE_SPLIT // Split node
24: ruleIDNxt ← ruleID
25: for i = 0 to 2 do
26: cmpFieldVal ← pkt.fields[node.splitLoc[i]]
27: if node.cmpVal[i] >= cmpFieldVal then
28: splitBits[i] ← 1
29: else
30: splitBits[i] ← 0
31: if node.isNext[splitBits] == 1 then
32: addrNxt ← node.nextAddr + node.offset[splitBits]
33: else
34: addrNxt ← 0

2) Read the corresponding node information from memory
into the register node based on the input addr (see line 6
in Algorithm 1).

3) Perform different processing based on the node type,
update the output addr and matched rule (see lines 7-34
in Algorithm 1), and output pkt without modification.

Fig. 7 depicts the data structure of different decision tree
nodes stored in the hardware. The current version of HACL
defines three types of nodes: rule nodes that stores rules, and
two types of nodes that store intermediate node information:
cut nodes and split nodes, which respectively correspond to two
common methods of building decision trees. More types can be
further defined as needed.
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Fig. 8. The Function diagram of the out-of-order Reorder module.

The rule node stores detailed information about the rule and
its ID. The SM compares each field of the packet in parallel to
see if it falls within the range defined by the rule. If all fields
match, the packet is considered a match and the output rule ID
is updated. Otherwise, the previous input rule ID is retained in
the output.

The cut node selects up to four bits from pkt.bits, combines
them into cutBits, and uses cutBits as an index to access the
boolean array node.isNext. If isNext[cutBits] is 1, there will
be a next node to visit, and addrNxt is calculated based on
node.nextAddr and node.offset[cutBits]. If isNext[cutBits] is 0,
addrNxt is set to 0 (which means the packet does not match
any rule). When addrNxt.ramID is 0, the packet will not be
processed by any subsequent SMs.

The split node selects three fields from the packet header
(which may include duplicates) and compares them to the three
values stored in the node. The results of the comparisons are
concatenated into a 3-bit splitBits, which is similar to cutBits
used in cut nodes.

For the search process of a PE, the best-case scenario is that
the packet completes the search in the pure pipeline section
without entering the RTC-SM module. The worst-case scenario
is that after completing the search in the pure pipeline section, a
packet enters an RTC-SM module and cycles through it m times
to complete the search, where m is the number of RTC-SM
modules. However, HACL sets up multiple RTC-SM modules
to ensure stable overall performance in various cases.

E. Out-of-Order Reorder Module

RTC-SM completes the final search and outputs the matching
results to a FIFO, which is then sent to the Reorder module.
The Reorder module is responsible for aggregating the results
from multiple PEs and outputting the final matching result.
In HACL, a ruleset is partioned into groups and assigned to
multiple PEs. Each input packet is sent to all PEs for search,
and each PE will provide a matching result: whether there
is a match and the ID of the matching rule. To obtain the
ID of the highest-priority matching rule, multiple results (rule

IDs) generated in different PEs for the same packet must be
aggregated and resolved. Although a packet (corresponding to
a unique sequence number) enters each PE simultaneously, the
time it takes to output the result from each PE is different due
to the unpredictable number of iterations within the RTC-SM.
Therefore, the Reorder module aligns the out-of-order results
from different PEs based on the packet’s sequence number. Note
that multiple results generated by one packet correspond to the
same sequence number. The final matching result output from
the Reorder module will also be fed back to the Cache module
at the front of the search engine to update the corresponding
cache entry.

In Fig. 8, three PEs output a series of matching results respec-
tively. Taking PE-1 as an example, it outputs in turn: the packet
with sequence number 1 matches R1, packet 3 does not match
any rules, packet 2 matches R4, and packet 5 matches R1. Since
the RTC-SM in Fig. 6 cannot guarantee the processing delay of
packets, although packet 2 is input to PE-1 first, its output result
is after packet 3. The Reorder module aggregates the results of
the three PEs and output the highest priority matching result.
For instance, packet 2 corresponds to outputs of R4 by PE-1,
R7 by PE-2, and R3 by PE-3. Then the final result would be
R3 which has the highest priority.

The out-of-order rearrangement function of HACL has sim-
ilarities with the classic Push-In-First-Out (PIFO) [34] queue
scheduling. PIFO rearranges results that do not arrive in order
internally, and the arranged results are output in ascending order
by sequence number. The Reorder module of HACL can use
multiple PIFO queues to perform reordering on each PE sepa-
rately, and then merge the results. However, PIFO maintains
elements as a complex ordered linked list structure or heap
structure, which will occupy a lot of hardware resources and
is not suitable for use in HACL. On the other hand, there
is an upper limit to the number of packets that HACL can
accommodate, which is the sum of three FIFOs in RTC-SM
and all SM modules. If the depth of each FIFO is 64 and there
are 3 RTC-SMs and 10 SMs in each PE, then the maximum
number of unmatched packets that the PE can accommodate
is 64*3*3 + 10*3 = 606. Therefore, the sequence number only
needs to be encoded using 10 bits, which is much smaller
than the default 16b/32b of PIFO. If PIFO is directly used
in the Reorder module, there will be a lot of redundancy. In
summary, the Reorder module of HACL needs to be redesigned
instead of directly reusing PIFO. In this work, we propose two
schemes to address this issue. The first scheme is to use a large
number of on-chip registers, which is called the ReorderReg
scheme (Fig. 9); the second solution is to reduce the on-chip
register footprint by doubling the BRAM footprint, called the
ReorderRAM scheme (Fig. 10).

1) ReorderReg Scheme: As shown in Fig. 9, ReorderReg
uses three blocks of RAM, each with independent read and
write functionalities, responsible for recording the results of the
three PEs in Fig. 8. The packet sequence number is indexed as
the address in RAM, and the matching rule ID is written to the
corresponding position in RAM. For each address, ReorderReg
uses 3 bits (i.e., flag bit) for each address to record the readiness
of the rule ID corresponding to the current packet. The first three
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Fig. 9. The ReorderReg scheme.

results from Fig. 8 have been stored in RAM, and the fourth set
of results is being inserted. For example, for the (2, R7) result
that PE-2 wants to insert, its rule ID result R7 is written to the
position at address 2 in the second block of RAM, RAM[1][2] =
R7, and the corresponding flag at position flags[2][1] is set to
True. When the bit values of flags[i] are all True, the results
for the three PEs of the packet with sequence number i have all
been recorded, as shown in flags[1] in Fig. 9.

ReorderReg also has a pointer pointing to the next packet
sequence number to be output, which in Fig. 9 points to se-
quence number 1. Since flags[1] is all True, if the backend
requests output results at this point, ReorderReg will read the
three results from RAM[0][1], RAM[1][1], and RAM[2][1] in
parallel, then calculate the maximum rule ID among them,
which is R1, and clear flags[1], and move the pointer to the next
position with sequence number 2. If the current flags are not all
True, then the pointer will not move forward, and ReorderReg
will notify the backend that the data is not yet ready.

In HACL, the packet sequence number increases directly
by 1, and when the number reaches the maximum value, it
returns to 0. Therefore, ReorderReg’s use of RAM is similar to a
circular queue, allowing for the reuse of RAM. For ReorderReg,
each block of RAM is only written when the corresponding
PE outputs a matching result, and is only read when the result
is required. Therefore, at most one read operation and one
write operation can be performed in each clock cycle, and it
can be implemented using standard dual-port RAM. The entire
workflow can be fully pipelined, meaning that input and output
processing can be performed on every cycle without blocking.
Compared to PIFO, ReorderReg uses bucket sorting instead
of insertion sorting, reducing the computational complexity of
insertion and increasing throughput. In addition, by enforcing
sequential output (the matching result with sequence num-
ber 3 must be output after the matching result with sequence
number 2 is output), ReorderReg eliminates the linked list
relationship in PIFO and reduces the complexity of hardware
implementation.

2) ReorderRAM Scheme: The ReorderRAM scheme is sim-
ilar to the ReorderReg design idea, but it utilizes two groups,
a total of 6 RAMs to achieve the same function. In Fig. 10,
ReorderRAM no longer maintains flags, but writes the flag
bit information and rule ID into the corresponding position
of RAM. The insertion operation of (2, R7) is to directly set
RAM1[1][2]=(True, R7). When outputting the result, Reorder-
RAM will read RAM1[0][1], RAM1[1][1], RAM1[2][1] at the
position pointed by the current pointer in parallel. If all three

Fig. 10. The ReorderRAM scheme.

values are recorded as True, it means the location is ready to
output the final merged result, and the values of RAM2[0][1],
RAM2[1][1] and RAM2[2][1] are simultaneously set to (F, 0)
to indicate that the location is cleared. The serial number of
the packet in HACL is 10b by default, and there will be 210

addresses of RAM1. When the serial number reaches the max-
imum value and overflows to 0, ReorderRAM will not directly
return to the original 0 of RAM1 like ReorderReg, but switches
to RAM2. Similarly, when the pointer overflows from the max-
imum address of RAM2 to 0, it switches to RAM1. The reason
for such design is that, when input and output exist at the same
time, the input operation will perform a RAM write (the rule
ID result is written to the corresponding position), the output
operation will perform a RAM read (the data pointed to by
the pointer is read) and a RAM Write (clear the location of
successful output). ReorderRAM performs two RAM writes
and one RAM read within one clock, and operates data of three
addresses at the same time. This operation cannot be realized
on a dual-port RAM, thus ReorderRAM realizes the above
functions by operating two RAMs.

When the backend continues to request data and the Re-
order module needs to do continuous output, ReorderRAM has
certain disadvantages compared to ReorderReg. ReorderReg
directly judges whether the data of the current pointer is ready
through the register flags, without reading delay. ReorderRAM
needs to wait for the data on the RAM to return, and there must
be a delay from the initiation of the read command to the return
of the data (the read delay of FPGA’s BRAM/URAM is 1-3
clock cycles). Table III illustrates the scenario where the RAM
read latency is 2 clock cycles.

The upper table in Table III shows a case when ReorderRAM
does not have any optimization and adopts the “simple read”
strategy. ReorderRAM initiates a request to read address 10
data in the first cycle, gets the data in the third cycle, and then
judges that the data is ready. Then the pointer moves to the
next position, and ReorderRAM in the fourth cycle initiate a
request to read data at address 11. It can be seen that under
this strategy, ReorderRAM outputs every 3 clock cycles, and
the throughput is very low. To address this issue, ReorderRAM
adopts the “adventurous read” strategy. After requesting the
data of address 10 in the first cycle, although the current pointer
still points to address 10 in the second cycle, a request for the
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TABLE III
ADVENTUROUS READING OF REORDERRAM (THE RAM ACCESS

LATENCY IS 2 CLOCK CYCLES)

Simple reading
Clock 1 2 3 4 5 6 7 8 9

Request address 10 - - 11 - - 12 - -
Return data - - 10 - - 11 - - 12
Data success - - T - - T - - T

Current pointer 10 10 10 11 11 11 12 12 12
Output result - - 10 - - 11 - - 12

Adventurous reading
Clock 1 2 3 4 5 6 7 8 9

Request address 10 11 12 13 14 15 16 14 15
Return data - - 10 11 12 13 14 15 16
Data success - - T T T T F T F

Current pointer 10 10 10 11 12 13 14 14 14
Output result - - 10 11 12 13 14 - -

data of address 11 is initiated, so that the data at address 10
can be obtained in the third cycle, and the data at address 11
can be obtained in the fourth cycle. If the No. 10 data of the
third cycle and the No. 11 data of the fourth cycle are ready, the
pointer can smoothly move to the next position until a certain
position returns “not fully ready”. As shown in Table III, since
the No. 14 data returned in the 7th clock cycle is not ready yet,
an adventure failure occurs, and the pointer is no longer moved.
Although the No. 15 data returned in the 8th cycle is ready,
the pointer of ReorderRAM still stays at the No. 14 position,
and the current returned No. 15 data is discarded. Then the
request to read No. 14 data is re-initiated, followed by a re-
initiated read of No. 15 data in the 9th cycle. By comparison,
“simple read” successfully output 3 data in 9 clock cycles,
while “adventurous read” successfully output 5 data, with a
67% increase in throughput. Ideally, “adventurous read” can
output data every clock without wasting cycles.

F. Cache Module

The Cache module uses the packet header’s 5-tuple value
as the key and the matching rule ID as the value to construct
a fixed-length hash table for lookup. The cache organization
method used is “direct mapping”. The packet first enters the
cache module, which checks whether the packet hits the cache.
If there is a cache hit, the system directly outputs the matching
result, that is, the matching rule ID; if there is no cache hit,
HACL adds a sequence number to the packet information to
indicate the order of the packet. Then, multiple copies of pkt
are sent to n PEs for parallel processing. The HACL cache
replacement strategy is direct replacement, which means that
when HACL provides a new lookup result, it would replace
the original entry. Subsequent evaluations have shown that this
approach achieves good results.

V. OVERVIEW OF THE COMPILER

The compiler acts as a conduit that seamlessly integrates
decision tree algorithms with HACL hardware. It converts an
input ruleset into a hardware-recognizable data structure file
based on design requirement parameters. The block diagram of
the compiler is illustrated in Fig. 11.

Fig. 11. Block diagram of the compiler.

A. Workflow of the Compiler

The following describes the working principle of the com-
piler in detail according to its operational sequence.
(1) Generation of Decision Tree Nodes: Based on a given
set of rules, the compiler first builds decision trees based on
a specific algorithm, and then generates the nodes of the al-
gorithm. Various decision tree algorithms, such as HyperSplit
[35], HyperCuts [23], CutSplit [20], ParaSplit [16], BitCuts
[25], and ByteCuts [27] that use cut and split operations can
be easily implemented on HACL’s hardware engine.
(2) Conversion of Tree Nodes to Hardware Nodes: In this
step, the nodes of the algorithmic decision trees are converted
into an encapsulated form suitable for hardware implementa-
tion, where the parameter of node_type is used to distinguish
between nodes adopting cut operation or ones using split op-
eration. The hardware operation types are then configured ac-
cording to the algorithm’s settings. As can be seen from Fig. 11,
there is a big difference in the representation of hardware nodes
and algorithm nodes.

This conversion also includes assigning values to each hard-
ware node structure such as cmpDim (comparison or cutting
dimension), cmpVal (comparison value), location (cutting loca-
tion), bitmap (indicating valid nodes), and offset (offset address
relative to base address). The design of the offset and isNext pa-
rameters in the Stage Module (SM) allows binary trees, ternary
trees, quad trees, and even octrees to be directly deployed in
HACL without generating extra empty nodes.
(3) Assignment of Hardware Address for Each Node:
This key step involves allocating addresses for all hardware
nodes. Initially, the input constraints are determined based on
the design requirements, including the depth of the SM pipeline,
the address width of the RTC-SM, the number of RTC-SM,
etc., and more importantly, the capacity limitation of the SM
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corresponding to each layer. Additionally, considering the in-
herent topological relationship between different SMs, the com-
piler carefully calculates the storage address of each node in the
hardware.

Specifically, due to the limited number of nodes that each SM
level can accommodate in the search engine (pre-determined
by FPGA resource configuration), the original data structure
converted in the previous step cannot be directly mapped to the
RAM of the hardware engine. In other words, multiple nodes
from the same level of the decision tree may need to be mapped
into different SMs due to capacity constraints. Furthermore, this
mapping process must consider the parent-child relationship of
the nodes: child nodes must be assigned to the SM or RTC-SM
that comes after their parent nodes’ SM or RTC-SM. Taking
into account the capacity limitations and the aforementioned
topological constraints, once the position of the parent node is
determined, the set of available SMs for the child nodes is also
determined.

The node mapping of RTC-SM can be regarded as ring-
shaped SMs. When reaching the end of the RTC-SM pipeline
and the mapping of the deepest node is not yet completed,
the ramID of the address for the next mapped node will be
the ID of the starting SM in the RTC-SM. It is important to
note that HACL tends to allocate fewer decision tree layers to
the RTC-SM, as an excessive number of layers in the RTC-
SM will require multiple accesses during the packet lookup
process, ultimately reducing overall performance. This process
continues until the addresses of all hardware nodes have been
calculated.
(4) Different Levels of Verification: In the previous conver-
sion steps from algorithm nodes to FPGA nodes, upon complet-
ing the conversion of each node, a verification of the node’s
function is conducted, which involves comparing its search
results with those of the algorithmic node. Similarly, in the step
of hardware address allocation, upon completing the address
allocation of all nodes of a complete pipeline, a decision tree
function validation is also performed. Immediate verification at
the node and tree levels effectively ensures the correctness of
the compiler’s functionality.
(5) Mapping to FPGA: Eventually, the node mappings of
multiple trees are printed into multiple files, and then the file
contents are transferred to the FPGA. HACL sets up a dedicated
interface for node updates. The contents of the tree node map-
ping files are sequentially written into the SRAM of each SM
and RTC-SM in HACL through the update interface. Therefore,
updating or replacing the ruleset does not require regenerating
the bitstream.

B. Address Coding and Assignment Strategy

Address Coding Mode: It is essential to note that the SM
modules within an individual PE are structured to form a uni-
directional cyclic graph. Supposing the parent node is allocated
to the SM module labeled id1, and within HACL, the address
for the child node linked to the same parent is denoted as
baseAddr+offset. This ensures that all child nodes related to the
same parent are located within a single SM module, and the

Fig. 12. The compilation illustration.

corresponding SM module id is denoted as id2. Then starting
from id1, id2 must be reachable. Given the cyclic nature of
the graph produced by the SM, trees of diverse depths can be
mapped onto this graph.
Greedy Algorithm for SM Selection: The compiler capi-
talizes on a greedy algorithm, opting selectively for the SM
that is in closest proximity to the parent node. Utilizing a DFS
(Depth First Search) traversal, the addresses for all nodes are
determined sequentially by the compiler. To wrap it up, the
compiler ingeniously amalgamates the decision tree algorithms
with the HACL hardware, ensuring optimized performance and
seamless integration.

C. An Compilation Example

According to the later evaluation, hardware resources are
sufficient for a 100K ACL ruleset scenario. Here is an example
of compiling the ruleset in Table I to help understand the HACL
compilation process. The top half of Fig. 12 demonstrates
the decision tree data structure generated by the algorithm for
the ruleset. In the bottom half, a possible mapping result of
the decision tree on the hardware search engine is displayed,
with yellow arrows indicating the node.nextAddr. In the data
structure, the children of nodes 2 and 3 are on the same level,
but they belong to different levels in the search engine, which is
an adjustment made by the compilation algorithm (nodes in the
same level of the tree can be mapped to different levels of the
SM pipeline). It is worth noting that the leftmost child nodes of
nodes 2 and 3 both contain rule R5, but because they need to
compare different subsequent rules: R6 and R7 respectively, R5
rule is duplicated and appears on the third and fourth levels of
SM in the search engine with different node.nextAddr. For R6
and R7 rules, there are no other rules to match subsequently,
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TABLE IV
RESOURCE CONSUMPTION OF SEARCH ENGINE

Module Configuration
LUT

(872K)
FF

(1,743K)
BRAM
(1,344)

URAM
(640)

WNS
(ns)

Max Frequency
(MHz)

Stage module
(SM)

Node address
width

4 1905 3810 0 0 2.337 601.32
5 1905 3810 0 0 2.183 550.36
6 2096 3810 0 0 2.3 588.24
7 1716 3050 5.5 0 2.017 504.29
8 1716 3050 5.5 0 2.003 500.75
9 1717 3050 5.5 0 1.972 493.10

10 1717 3050 5.5 0 2.11 529.10
11 1718 3050 0 3 1.324 373.69
12 1718 3050 0 3 1.532 405.19

SM pipeline
(address width:

1, 3, 5, 7, 9, 11,
12, 12, 12, 12, ...)

Pipeline
depth

4 7222 14471 5.5 0 1.283 368.05
6 10522 20565 11 3 1.059 340.02
8 13825 26659 11 9 1.007 334.11

10 17126 32753 11 15 0.711 304.04
12 20425 38847 11 21 1.148 350.63
14 23725 44941 11 27 0.523 287.60
16 27025 51035 11 33 0.736 306.37
18 30325 57129 11 39 0.551 289.94
20 33627 63223 11 45 0.84 316.46

PE (SM pipeline + 3
RTC-SM, address width:

5, 5, 5, 10, 10,
12, 12,12, 12, ...)

SM pipeline
depth

12 38074 67151 50.5 48 0.813 313.77
14 41383 73265 50.5 54 0.516 287.03
16 44588 79353 50.5 60 0.459 282.41
18 47883 85455 50.5 66 0.402 277.93
20 51187 91549 50.5 72 0.59 293.26

HACL (4 PEs +
ReorderRAM)

SM pipeline depth
(RTC-SM

address width: 10)

10 138025 237692 416 60 0.253 266.88
12 151315 262090 416 84 0.474 283.61
14 164615 286475 416 108 0.389 276.93
16 177682 310750 416 132 0.222 264.69
18 190811 335203 416 156 0.438 280.74
20 203989 359781 416 180 0.176 261.51

SM pipeline depth
(RTC-SM

address width: 12)

10 138090 237715 218 168 0.314 271.30
12 151369 262083 218 192 0.386 276.70
14 164671 286400 218 216 0.454 282.01
16 177767 310848 218 240 0.291 269.61
18 190878 335184 218 264 0.3 270.27
20 204060 359529 218 288 0.328 272.33

so they only appear on the last level of SM without being
duplicated. This design of multiple parent nodes pointing to
the same child node effectively reduces the storage resource
consumption in the search engine.

VI. EVALUATION

We use System Verilog language to implement the search
engine with approximately 2,700 lines of code. The compilation
algorithm for mapping adjustments of decision trees is imple-
mented by approximately 1,000 lines of C++ code. The hard-
ware performance evaluation is conducted by using Xilinx’s
Alveo U50 data center acceleration card equipped with a 16nm
UltraScale+ XCVU35P FPGA chip with 872K LUTs, 1,743K
registers, as well as 1,344 36Kb BRAMs and 640 288Kb
URAMs. Hardware resource evaluation is performed with Xil-
inx Vivado v2020.1. The ACL rulesets used in the evaluation are
generated by ClassBench [36], and the network traffic used in
the evaluation of the Cache module is the Internet flow collected
by CAIDA from Equinix NYC in 2019 [37]. This traffic can
simulate the flow situation of datacenter gateways.

A. Hardware Resource Envaluation

This section evaluates the detailed resource consumption of
HACL after implementation. The layout and routing strategy
used is “Performance ExtraTimingOpt”. In order to evaluate
HACL as a hardware IP, IO port binding is not performed.
The clock cycle configuration is 4ns, and the duty cycle is

50%, where WNS (Worst Negative Slack) represents the worst
negative timing margin, LUT is a logic 6-input lookup table,
and FF is a register.

1) Implementation Results: HACL’s architecture is highly
parameterized. The parameters such as the SM pipeline depth,
the RTC-SM address width, and the number of PEs are ad-
justable. They are defined in the configuration macros of the
source code files, and users can modify the architecture just by
changing the macro values. After modification, the bitstream of
the corresponding architecture needs to be regenerated. We have
separately evaluated the resource utilization and maximum per-
formance achievable by SM, SM pipeline, PE, and the overall
HACL search engine under different configurations. The results
are shown in Table IV.

The complete search engine of HACL consists of 4 PE mod-
ules and a ReorderRAM module (4-input). Different levels of
SM and a fixed set of 3 RTC-SM modules with two sets of
address width have been implemented, allowing for the accom-
modation of rulesets of various scales. As the RAM of the SM
is configured in dual-port mode, each SM is equipped with two
packet processing channels. One channel only reads node infor-
mation from the RAM, while another channel is responsible for
writing information to RAM when updating, and reading node
information from RAM when not updating to improve the total
throughput.

In the pipeline composed of SMs, different SMs utilize a
stepped distribution of address widths. This means that the
address width of each SM increases progressively to adapt to
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nodes in different levels. This stepped distribution effectively
utilizes resources, enhancing the flexibility and performance
of the system. The maximum operating frequency represents
throughput, because the pipeline can run without pauses under
the current configuration.

We calculate the capacity using the example of the HACL
configuration with the minimum SM pipeline depth of 10. The
address widths of all stages in the SM pipeline are: 5, 5, 5,
10, 10, 12, 12, 12, 12, 12, corresponding to storage capacities
of: 32 (25), 32, 32, 1024 (210), 1024, 4096 (212), 4096, 4096,
4096, 4096. Adding them together gives us the corresponding
capacity of the SM pipeline: 32*3+1024*2+4096*5=22.624K.
In addition, each RTC-SM contains 3 SMs, with each stage
having an address width of 10. Thus, the capacity of three
RTC-SMs is: 1024*3*3=9.216K, and the total capacity of 4
PEs is: (22.624K+9.216K)*4 ≈ 127K. Similarly, in an HACL
configuration with the maximum SM pipeline depth of 20
and the address width of 12 for RTC-SM, 4 PEs can contain
(32*3+1024*2+4096*(15+3*3))*4 ≈ 401K nodes and rules.
This means that, under various configurations, the search engine
is capable of accommodating ACL rules with a scale of 100K
while delivering throughput performance exceeding 260Mpps.

Moreover, the logical resource occupation of the maximal
configuration is only 204,060

872K = 23.4%, the register occupation
is 20.6%, the BRAM is 16.2%, and the URAM is 45%. The U50
board still reserves a large amount of space for other modules,
and more HACL search engines can be further deployed to
increase the rule capacity or classification throughput.

2) Storage Overhead: HACL, ParaSplit [16], TcbTree [19],
and KickTree [31] can all map the data structure of multiple
decision trees onto self-designed hardware (the latter three can
only accommodate specific types of decision trees, and are
less versatile than HACL), but their storage resource overhead
for the node address encoding varies. The calculation method
for obtaining the address of the next node to be accessed in
ParaSplit is node.nextAddr + cutBits, which causes ParaSplit to
still consume a node’s storage space for an empty child node.
TcbTree saves the exact address of each child node on the node,
avoiding the storage occupied by empty nodes and allowing
child nodes to appear in different RAMs. However, the fixed
address width of TcbTree results in excessive storage overhead,
as each address occupies 20bit, and the total overhead of the oc-
tree’s child node addresses reaches 8*20b=160b. HACL utilizes
the base address node.nextAddr plus the offset to determine
the position of the child node. Since the length of the offset
is much shorter than nextAddr, the storage overhead is smaller
than that of TcbTree, and it also avoids the storage overhead of
empty nodes.

Fig. 13(a) shows the storage overhead of hardware
address encoding of HACL compared to ParaSplit and
TcbTree/KickTree under multiple ACL rulesets. The storage
overhead here refers to the pure storage consumption of all
nodes and rules without considering hardware redundancy, in
which rule nodes, cut nodes, and split nodes are calculated
separately. This can intuitively reflect the advantages and
disadvantages of different encoding and addressing schemes.
The storage overhead of HACL on 1K, 10K, and 100K
rulesets is 0.19 - 0.25Mb, 2.20 - 2.30Mb, and 14.1 - 20.5Mb,

Fig. 13. The storage overhead of hardware address encoding of HACL
compared to other designs.

TABLE V
THE RESOURCE CONSUMPTION OF REORDER MODULE

Module
Input
num LUT FF BRAM

WNS
(ns)

Max
Frequency

(MHz)

ReorderReg
(address width:

10)

2 20 20 2 2.564 696.38
4 7042 4225 4 0.527 287.94
8 11733 8348 8 0.625 296.30

ReorderRam
(address width:

10)

2 115 63 4 1.961 490.44
4 306 126 8 1.568 411.18
8 572 222 16 1.549 408.00

respectively. The storage overhead increases linearly with the
number of rules.

Fig. 13(b) depicts the ratio of additional storage overhead
compared to the original ruleset. The additional storage over-
head refers to the address index information in the decision
tree data structure (only intermediate nodes, excluding rules)
for hardware. Compared to the storage size of the original
ruleset, the additional storage overhead brought by HACL is
around 20%, while ParaSplit has a maximum additional storage
overhead ratio of 150%, and that for TcbTree and KickTree
reaches 50%. HACL always has lower storage overhead than
ParaSplit, TcbTree and KickTree, and on the 100K ruleset,
HACL can save up to 4Mb of storage space compared to the
latter three.

3) Reorder Module: It is mentioned in Section IV-E that the
Reorder module can be realized by the existing PIFO design, but
a single PIFO needs to consume 140K LUT resources when ac-
commodating 1K units, and 512 units correspond to 70K LUT
[38]. The hardware resource occupation of ReorderRAM and
ReorderReg under 1K capacity with different input numbers is
shown in Table V. The LUT resource consumption of Reorder-
Reg with four inputs is only 5% of PIFO, and ReorderRAM’s
is only 0.22%. On the other hand, the LUT and Register con-
sumption of ReorderRAM is only 4.3% and 3% of ReorderReg
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TABLE VI
COMPARISON OF DECISION TREE BASED APPROACHES ON FPGA

Ruleset
Scale

Approach Device
Resource consumption Classification

Throughput (MPPS)
Adaptive

LUT Registers BRAM URAM

100K

Proposed HACL UltraScale+ XCVU35P 190811 335203 416 156 280.74 �
KickTree_Systolic [39] Ultrascale+ VU9P 506670 550812 1836 936 121.40 ×

TcbTree [19] Ultrascale+ VU9P 66834 111719 990 792 45.6 ×
KickTree_Parallel [31] Ultrascale+ VU9P 607596 819039 1815 762 172.9 ×

MBitTree on FPGA [30] Virtex-7 XC7V690T 37828 75656 818 0 175.9 ×

10K

REC [29]
Virtex-5 XC5VFX200T 7044 \ 173 0 323.5 ×
Virtex-6 XC6VLX760 7044 \ 173 0 388.2 ×

UTPC [18] Stratix III EP3SE260H780 40070 \ 852 0 433 ×
D2BS [40] Virtex-5 XC5VSX240T \ \ \ \ 263.7 ×

Hypercuts on FPGA [41] Virtex-5 XC5VFX200T 10307 \ 407 0 250.7 ×
ParaSplit [16] Virtex-5 XC5VSX240T 48380 \ 399 0 200.4 ×
CubeCuts [28] Virtex-5 XC5VFX200T 45656 \ 195 0 368.8 ×

Hypersplit on FPGA [42] Virtex-6 XC6VLX760 2988 5976 103 0 230.5 ×

TABLE VII
STATISTICAL CHARACTERISTICS OF CAIDA DATA SET

No. #Packets #Flows #Packets in the largest flow

1 2,620,909 176,545 17,053
2 2,517,685 176,266 16,499
3 2,530,158 177,734 15,974
4 2,518,856 175,956 13,092
5 2,530,680 175,806 15,594
6 2,517,752 174,663 16,463
7 2,515,396 173,449 16,765
8 2,501,781 173,972 16,448
9 2,493,844 172,686 17,329
10 2,465,020 173,883 17,491

(four inputs). Compared with ReorderReg, ReorderRAM has
a higher operating frequency, but its BRAM consumption is
doubled. Based on the above facts, it seems that ReorderRAM
would be a more suitable choice as the out-of-order Reorder
module for HACL. However, if there are limitations on the
availability of BRAM resources, ReorderReg can be considered
as an alternative option.

B. Performance Comparison

Table VI shows the comparison of performance and resource
consumption between HACL and other decision tree based
schemes. We choose the HACL configuration with SM pipeline
depth of 18 for comparison, as this configuration can provide
sufficient adaptability. Note that all performance data compared
are from the cited works.

There are five designs capable of supporting 100K rules,
in which HACL has achieved the best performance results.
Compared with the up-to-date KickTree_Systolic design [39],
the throughput of HACL is more than twice that of it. Since
the latest approaches take advantage of FPGAs equipped with
URAMs, they cannot be accommodated by the previously
adopted platforms such as Virtex-5/6. Furthermore, many previ-
ous designs do not support large-scale rules and only adopt 10K
ACL as the benchmark. Although their throughput can reach
very high values, the low ruleset size limits their applicability.
The most important thing is that among the comparison objects,
only HACL is a versatile architecture that can provide adaptivity
to support multiple algorithms and various decision tree sizes
without the need of architecture regeneration.

C. Cost Performance Comparison

We also compare the software solutions in DCN and HACL
from the perspective of cost performance. HP’s cabinet server,
the HPE ProLiant DL360 Gen10, with an Intel dual-socket
Xeon Gold 6248/2.5 GHz (3.9 GHz), is priced at US $15,057,
according to quotes from zones.com. The machine has a total
of 40 cores and 80 threads. Even according to the single-thread
optimal throughput of 2Mpps, the entire machine can only
provide 160Mpps throughput, and the average cost of 1Mpps is
US $94. The U50 network card used in the evaluation of HACL
in this article is quoted at US $4,650 on this website, and the
server that the network card is plugged into can be chosen as
a model with mediocre performance. If the server is a single-
socket Intel Xeon Gold 5218/2.3 GHz (3.9 GHz), the price is
US $4,900. After comprehensive consideration, the 1Mpps of
HACL costs US $38.2, which saves 60% of the cost. In addition,
the server where the U50 is located and the remaining resources
of the U50 can be used for other services of the gateway, thus
the actual average cost will be lower.

D. Performance Improvements from Caching

This section evaluates the Cache module of HACL, which
proves that the current design has a good performance improve-
ment. Different from OvS’s complex megaflow cache system
[43], HACL’s Cache module essentially performs the lookup
and update process of the hash table.

The CAIDA traffic is divided into 10 groups in chronolog-
ical order, and the duration of each group of traffic is 5-10s.
Table VII shows some statistical characteristics of the 10 groups
of traffic. It can be seen that the 10 groups of data are very
similar in the number of flows and the number of packets of
the largest flow. In other words, each test set can still well
reflect the overall characteristics of CAIDA traffic, and will not
affect the evaluation effect due to the shorter traffic data after
segmentation.

Fig. 14 shows the box plot of the cache hit rate under dif-
ferent cache entry capacities. Each box reflects the maximum,
minimum, and median hit rates of all traffic groups under a
specific cache size. In general, the hit rate has increased from
an average of 3.28% under 4 cache entries to 82.1% under
64K cache entries. The growth rate is gradually slowing down
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Fig. 14. HACL cache hit ratio.

(note that the horizontal and vertical coordinates of Fig. 14
are logarithmic scales). The mechanism behind this lies in the
power-law distribution of traffic. A small number of large flows
have more packets, and a certain cache can greatly reduce the
pressure on the backend. We chose a cache entry size of 256
in the implementation as it serves as a reasonable trade-off
point. First, it imposes relatively low resource consumption, and
second, the growth rate in hit rate slows down as the number
of entries continues to increase. When larger caches are used,
the LUT and Register overhead does not increase much, but the
RAM overhead increases exponentially.

It is worth noting that the Cache module can only reduce the
pressure on the backend (some packets need to access RTC-
SM multiple times), and improve the average throughput, but
for instantaneous burst traffic, the cache may be completely
invalid, and a large number of packets are queued for backend
processing. Thus, it cannot be taken for granted that the hit rate
of 80% can increase the throughput to 250Mpps

1−80% = 1.22Gpps.
From the perspective of queuing theory, in order to ensure that
the queue length is controlled within a certain range, the arrival
rate of tasks must be less than the expected processing capacity.

Under 2K entries, the cache hit rate is about 50%, but if the
CAIDA traffic is continuously injected at a rate of 375Mpps
(1.5 times the processing capacity of the backend 250Mpps),
the backend queue will exceed 3000 packets at most, resulting
in FIFO overflow. If injected at a rate of 325Mpps (1.3 times the
back-end processing capacity), the back-end queue length is at
most 100 packets, resulting in an additional 400ns queue delay,
which is equivalent to HACL’s own 500ns processing delay.
On the other hand, caching can only enhance performance
in specific scenarios and is suitable for some scenarios with
elephant flows.

VII. CONCLUSION

In this paper, we design and implement a heterogeneous
and adaptive architecture for fast ACL engine on FPGA-based
SmartNIC, based on decision tree algorithm. In the aspect of
performance, the ACL engine can achieve at least 260Mpps
throughput for 100K-scale ACL rulesets. In the aspect of adap-
tivity, it supports the arbitrary ruleset update because it could
allow any depth of decision trees with a small sacrifice of
average throughput. With extensive experimental evaluations,
we demonstrate the feasibility of our FPGA architecture and
the compilation algorithm.
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