
 
 

 
 

 
IEEE M

icro 
 

 
 

 
 

 M
arch/April 2023			

Em
erging System

 Interconnecst/H
ot Interconnects 29	�

Volum

e 43 N
um

ber 2

Volume 43, Number 2�M arch/April 2023

Mini-Theme: Emerging System Interconnects
Mini-Theme: Hot Interconnects 29

w w w . c o m p u t e r . o r g / m i c r o

THEME ARTICLE: HOT INTERCONNECTS 29

A Parallel and Updatable Architecture
for FPGA-Based Packet Classification
With Large-Scale Rule Sets
Yao Xin and Wenjun Li, Peng Cheng Laboratory, Shenzhen, 518055, China

Gaogang Xie, CNIC, Chinese Academy of Sciences, Beijing, 100083, China

Yang Xu , Fudan University, Shanghai, 200433, China

Yi Wang, Southern University of Science and Technology, Shenzhen, 518055, China

As a programmable hardware, field-programmable gate array (FPGA) providesmore
opportunities for algorithmic network packet classification. Despitemore than 10
years of research, themost actively investigated pipeline architectures still struggle to
support fast rule search and efficient rule update for large-scale rule sets. In this
article, we design and implement a novel architecture formultitree-based packet
classification on FPGA, where the search and update processes are decoupled. A
strategy ofmulti-processing elements (PEs), parallel search, and serial update is
adopted. The parsing ofmultiple tree search results adopts amodular and hierarchical
design, supporting architecture with various tree numbers. In addition, incremental
rule updates can be achieved simply by traversing all PEs in one pass, with little and
bounded impact on rule searching. Comparedwith TcbTree, the state-of-the-art
updatable classifier, the experimental results on FPGA show that the classification
performance of our design improves 3.4� on average for various 100k-scale rule sets.

Network functions virtualization and software
defined networking have emerged as a solu-
tion for data centers that can provide flexibility

by implementing a software-based network over physi-
cal infrastructure.1 Virtualization has enabled hundreds
of virtual machines per server in data centers usingmul-
ticore central processing unit (CPU) technology. How-
ever, x86 servers not optimized for packet processing
are inefficient for software implementation. Under such
circumstances, SmartNIC, a programmable hardware
accelerator, has been increasingly adopted to offload
the frequently updated network functions of the virtual
network protocol stack. Among these, packet classifica-
tion is a fundamental and essential task, which is to dis-
criminate packets into separate “flows” and enable
differentiated functionalities, so that all packets belong-
ing to the same flowwill be processed similarly.

Field-programmable gate array (FPGA) has been
regarded as promising hardware for line-speed packet
classification in SmartNIC, due to its ability to recon-
figure and offer massive parallelism. The majority of
FPGA-related solutions are fully pipelined, which can
benefit from the high throughput. However, the archi-
tectures of pipelines have the disadvantage of not
supporting dynamic rule updates (i.e., without precom-
puting the memory content) well, especially for large-
scale rule sets. By introducing a multicore architecture
instead of a pipeline architecture for packet classifica-
tion, the recently proposed TcbTree2 can effectively
support real-time rule updates. However, it has a per-
formance concern for large-scale rule sets. Therefore,
existing FPGA-based packet classification designs are
still difficult to support fast rule search and efficient
rule update for large-scale rule sets.

In this article, we propose an updatable FPGA-
based packet classifier for large-scale rule sets, based
on our recently proposed algorithmic packet classifica-
tion scheme KickTree,3 which is a multitree algorithm
dedicated to FPGA. For high lookup throughput, we

0272-1732 � 2023 IEEE
Digital Object Identifier 10.1109/MM.2023.3238012
Date of publication 19 January 2023; date of current version
13 March 2023.

IEEE Micro Published by the IEEE Computer Society March/April 2023110
Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on March 14,2023 at 09:26:53 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6495-081X
https://orcid.org/0000-0002-6495-081X
https://orcid.org/0000-0002-6495-081X
https://orcid.org/0000-0002-6495-081X
https://orcid.org/0000-0002-6495-081X
https://orcid.org/0000-0002-0958-8547
https://orcid.org/0000-0002-0958-8547
https://orcid.org/0000-0002-0958-8547
https://orcid.org/0000-0002-0958-8547
https://orcid.org/0000-0002-0958-8547

adopt multiple processing elements (PEs) running in
parallel to perform rule search, and multiple computing
cores of the classifier enter into force at the top layer.
To support incremental rule updates, we adopt a strat-
egy of centralized memory and serial access in each PE
rather than an entire pipeline. With respect to the orga-
nization of multiple PEs in each classifier, a method of
parallel search and serial update is proposed to decou-
ple the search and update process. Experimental
results show that, for various 100k-scale rule sets, it
can achieve an average classification throughput of
182.6million packets per second (MPPS) and an update
throughput of 3.1 million updates per second (MUPS).
As an extension of Xin et al.,4 our proposed design is
compared with the state-of-the-art updatable classifier
TcbTree,2 the classification performance of this work is
superior in terms of throughput and latency.

BACKGROUND
Packet Classification Problem
The purpose of packet classification is to classify net-
work traffic based on a classifier that contains a set of
predefined rules with priority. Each rule consists of a set
of fields in exact value, prefix, or range representations,
and the action to be taken when being matched. Table 1
shows an example rule set with four IPv4 header fields.
As a widely studied bottleneck, packet classification
has attracted extensive research attention in the past
two decades.5 Since our aim in this work is to design a
novel architecture for packet classification on FPGA,
based on our recently proposed algorithm KickTree, we

next describe some related architecture designs and
give some technical reviews of the KickTree algorithm.
More related work on algorithmic and architectural sol-
utions can be found in Xin et al.4 and Li et al.6

Architecture Design Review
Generally speaking, current FPGA solutions can be
divided into two categories: fully pipelined and multi-
core computing.

1) FPGA Solutions Based on Full Pipelines: Because
the fully pipelined architecture can produce results
every cycle, the classification throughput is directly
related to the frequency and can achieve high values.
Thus, the vast majority of FPGA designs adopt this
scheme. However, limited by the algorithms they are
based on, none of these architectures currently sup-
ports both large-scale and real-time rule updates. Specif-
ically, the presence of rule duplication and irregular tree
structure in decision tree-based FPGA architectures hin-
ders their support for dynamic rule updates.7 On the
contrary, although decomposition-based designs can
fully support dynamic updates,8,9 the method is essen-
tially exhaustive in listing all possiblematching combina-
tions for each bit. Therefore, the consumption of
hardware resources is considerable, especially for rules
with more wildcards. This feature always restrains the
scale of rule sets accommodated by FPGAs.

2) FPGA Solutions Based on Multicore Computing:
Another paradigm not utilizing full pipelines adopts a
strategy of multiple computing cores or engines,
which can leverage centralized memory to facilitate

TABLE 1. Example rule set with four IPv4 fields.

Rule id Src IP addr. Dst IP addr. Src port Dst port Action

R1 228.128.0.0/9 124.0.0.0/7 119:119 0:65535 action1

R2 223.0.0.0/9 38.0.0.0/7 20:20 1024:65535 action2

R3 175.0.0.0/8 0.0.0.0/1 53:53 0:65535 action3

R4 128.0.0.0/1 37.0.0.0/8 53:53 1024:65535 action4

R5 0.0.0.0/2 225.0.0.0/8 123:123 0:65535 action5

R6 107.0.0.0/8 128.0.0.0/1 59:59 0:65535 action6

R7 0.0.0.0/1 255.0.0.0/8 25:25 0:65535 action7

R8 106.0.0.0/7 0.0.0.0/0 0:65535 53:53 action8

R19 160.0.0.0/3 252.0.0.0/6 0:65535 0:65535 action9

R10 0.0.0.0/0 254.0.0.0/7 0:65535 124:124 action10

R11 128.0.0.0/2 236.0.0.0/7 0:65535 0:65535 action11

R12 0.0.0.0/1 224.0.0.0/3 0:65535 23:23 action12

R13 128.0.0.0/1 128.0.0.0/1 0:65535 0:65535 action13

March/April 2023 IEEE Micro 111

HOT INTERCONNECTS 29

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on March 14,2023 at 09:26:53 UTC from IEEE Xplore. Restrictions apply.

rule updates. The design in Kennedy and Wang10 used
multiple packet classification engines working in par-
allel with shared memory, allowing it to classify pack-
ets at high speed. However, it has no dynamic
updating function, as the HyperCuts algorithm it
adopts does not eliminate rule duplication. TcbTree2

is able to support dynamic updates without rule repli-
cation, but it encounters a performance bottleneck in
support of large-scale rules, due to the considerable
tree depth and the large number of rules that cannot
be included in the tree using hash lookups. The latest
updatable architecture for KickTree,4 which is the pre-
liminary version of this article, achieves good perfor-
mance for large-scale rules. However, it lacks peer-to-
peer experimental comparisons with other updatable
classifiers, which cannot prove the innovation and
improvement of performance.

KickTree Algorithm Review
KickTree first converts each range field into a longest
common prefix,2 allowing each rule to be represented
by a sequence of ternary strings (i.e., 0, 1, wildcard).
After that, several balanced trees of bounded depth
are constructed in a recursive manner, consisting of
the following two key steps.

1) Tree building by bit selecting. Nonwildcard bits
are dynamically extracted from all possible
header fields using a locally greedy strategy for
shallow and balanced tree purposes.

2) Rule sifting. Rules that do not meet the bit selec-
tion conditions (e.g., the rule value for the
selected bit position is a wildcard) or rules that
exceed binth (the threshold for the number of
rules in a leaf node) in leaf nodes are “kicked
out” from the current tree. If there are still rules
left after building the current tree, the same
method would be utilized to construct the deci-
sion tree continuously, and the kicked-out rules
would be retained for building the next tree. This
process continues until there are no more rules.

Figure 1 illustrates a working example for the rules
given in Table 1.

TO FULLY SUPPORT DYNAMIC RULE
UPDATESWITHOUT SACRIFICING
LOOKUP PERFORMANCE FOR LARGE-
SCALE RULE SETS, WE PREFER TO
DESIGN A NEWHARDWARE
ARCHITECTURE FROM SCRATCH
RATHER THAN USE A CLASSIC PURE
PIPELINE DESIGN SO THAT THE
POTENTIAL OF THE KickTree
ALGORITHM CAN BE FULLY
UNLEASHED.

HARDWARE DESIGN
Design Overview
While the KickTree algorithm appears to be a good fit
for FPGA, there are still many challenges in concrete
FPGA implementation because the most widely stud-
ied pure-pipeline designs can hardly support dynamic
rule updates without precomputing memory content.
In addition, as a multitree scheme, how to efficiently
collect and parse the results of multiple trees and
how to cope with the relationship between classifica-
tion and update remains challenging. Therefore, to
fully support dynamic rule updates without sacrific-
ing lookup performance for large-scale rule sets, we
prefer to design a new hardware architecture from
scratch rather than use a classic pure pipeline design
so that the potential of the KickTree algorithm can
be fully unleashed. Next, we will introduce the top-
level architecture and storage organization dedi-
cated to KickTree. After that, the detailed architec-
tural design of each search tree PE is elaborated,
followed by a hierarchical concurrent result

FIGURE 1.Working example of KickTree, with max depth = 2, max selecting bits = 2, binth = 1.

112 IEEE Micro March/April 2023

HOT INTERCONNECTS 29

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on March 14,2023 at 09:26:53 UTC from IEEE Xplore. Restrictions apply.

collection scheme. Finally, we present the rule
update mechanism.

Top-Level Architecture
The top-level architecture of each classifier adopts a
parallel-search, serial-update strategy, as illustrated
on the right-hand side of Figure 2. Each PE corre-
sponds to a tree generated in KickTree. Each PE pro-
cesses rule search and update separately. As a result,
there are two interfaces for receiving commands for
rule search/updates and two interfaces for exporting
search/update results, respectively. The input com-
mand comprises a packet/rule along with an operation
code of SEARCH (for packet) or DELETE/INSERT (for
rule), while the result consists of the matched rule ID
and result code of RULE_FOUND, RULE_NOT_FOUND,
UPDATE_SUCCESS, UPDATE_FAILURE, etc.

The top-level classifier handles the two input com-
mands differently: the search command is delivered to
all PEs for parallel execution, whereas the update

command is only distributed to the first PE and exe-
cuted serially in subsequent PEs. Up until the last
resolver provides the final result, the results of all PE
searches are parsed and merged in pairs by the result
resolver level by level.

The update results, however, go through each PE
in turn. The rule update operation is continued in the
current PE if the update in the preceding PEs fails, and
the result is passed until the update is successful in a
particular PE. From a high-level perspective, each clas-
sifier can operate independently. Thus, as long as
hardware resources allow, multiple computing cores
can enter into force on the FPGA to improve the over-
all performance.

Search Tree Storage Organization
As shown in Figure 3, the storage organization of
each search tree is cached in two centralized mem-
ories: node table random access memory (RAM)
and rule table RAM. The entries of these memories

FIGURE 2. Architecture of the classifier.

FIGURE 3. Storage organization of search tree.

March/April 2023 IEEE Micro 113

HOT INTERCONNECTS 29

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on March 14,2023 at 09:26:53 UTC from IEEE Xplore. Restrictions apply.

constitute three types of unidirectional chained
lists. The intermediate node table and leaf node
table entries represent intermediate nodes (includ-
ing the root node) and leaf nodes, respectively.
Moreover, each rule table entry represents a rule.
Each leaf node is associated with a rule subset,
and the collection of subsets of all leaf nodes is
cached in the rule table RAM.

Search Tree PE
Instead of a fully pipelined design, the architecture of
the search tree PE adopts a centralized memory and
serial access method, as illustrated on the left-hand
side of Figure 2. The node searcher traverses the tree
nodes from the root by reading linked node table
entries from memory. When a valid leaf node is found,
the rule subset address will be delivered to the rule
processor, which will linearly search the rule table
RAM and take the appropriate actions of search,
delete, or insert, according to the operation code. To
enhance memory utilization, we implement multiple
search units to work in parallel since they can access
the memory in different time slots with limited query
time. Furthermore, round robin ensures the arbitration
between multiple units in both modules as each unit
has the same priority.

PEs are able to process rules and packets simi-
larly by sharing hardware resources. In particular,
the node searcher processes rules using the lower
endpoint of the range identical to the packet for-
mat as input. Meanwhile, the rule processor han-
dles the specific operations of packets (search) and
rules (delete/insert) with different modules. In addi-
tion, each PE implements an update bypass first-
in–first-out (FIFO), which caches successful update
results and forward them, bypassing the tree. The
node searcher, in contrast, processes only unsuc-
cessful update results in preceding PEs. This mech-
anism avoids repeated updates of multiple PEs and
reduces the delay of serial updates.

Hierarchical Concurrent Results
Collection
For the purpose of rapid development and hardware
implementation of a classifier with arbitrary tree num-
bers, we introduce the idea of modularity in the top-
level architecture design since the number of trees
can be random and unpredictable for any given set
of rules. We employ a multilevel result resolver with a
2-input result resolver as the fundamental component
to address this challenge. Accordingly, the results of
the search trees are parsed hierarchically in pairs.

Empty trees are used to supplement the number of
search trees to powers of 2.

The architecture of the elementary 2-input result
resolver is shown in Figure 4. It aims to solve two issues
as follows.

1) The classifier may produce out-of-order search
results due to the existence of multiple search
units and the different processing delays of each
packet.

2) The individual trees produce results at different
rates.

According to the first issue, each input channel has an
independent RAM to reorder the out-of-order results,
and the low-order bits of the packet ID act as the write
address. Once a predetermined number of results
have been written, the results of both channels are
concurrently read in order and compared by priority.
Rules with higher priority are output to the FIFO con-
trolled by the bus interface to the next level module.
The second issue is tackled by a dataflow balancer,
which dynamically monitors the amount of data flow-
ing into the two channels and controls the bus inter-
face in real time so that the input speed of the results
on both sides is roughly equal. For the purpose of
resource saving, the second channel can be set to
bypass mode, which is activated when the second
channel is connected to an empty tree. In bypass
mode, the reorder RAM will not be implemented.

FIGURE 4.Modularized result resolver.

114 IEEE Micro March/April 2023

HOT INTERCONNECTS 29

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on March 14,2023 at 09:26:53 UTC from IEEE Xplore. Restrictions apply.

Rule Update Mechanism
The architecture supports real-time incremental rule
updates without precomputing memory contents as
in pipelined designs. When performing rule updates in
each PE, the node searcher caches the complete
information of up to two levels of traversed nodes.
Therefore, we can trace back two levels of nodes to
modify the contents of related tables.

From the top-level perspective of the classifier,
update commands and results pass sequentially
through each PE. If the result of the previous PE
has been successful, no command will be passed
to the tree. Instead, it will be cached directly in
the bypass FIFO along with the result and continue
to pass down until they are read from the last PE.
The packet classification procedure must be inter-
rupted prior to the update operation. Moreover, it
is also preferable to wait until the update com-
mand has traversed all PEs before sending the sub-
sequent one for the sake of maintaining atomic
consistency.

Due to the hardware’s difficulty in achieving the
exact dynamic tree reconstruction as in software, there
may be an update failure: a rule cannot be inserted into
any tree. To prevent this from happening, the last PE of
each classifier employs a linear search without the
restriction of binth to accommodate previously
inserted failing rules. Figure 2 displays this feature. Nev-
ertheless, this is merely a guarantee mechanism. In
practice, it is rare for all previous PE updates to fail,
especially when the number of PEs is large.

FPGA IMPLEMENTATION RESULT
Experimental Setup
ClassBench11 is utilized to generate three types of rule
sets (i.e., ACL, FW, and IPC). The 100 scale is generated
as the large-scale rule set because it is widely recog-
nized as large scale for packet classification work, and
it is also challenging for resource-precious FPGA. The
design is developed by Vivado 2021.2 tool and evalu-
ated on a Xilinx UltraScaleþ VU9P FPGA. The perfor-
mance evaluations are conducted by simulation
instead of testing on the actual FPGA board.

Parameter Customization
In the case of resource constraints, a set of parame-
ters needs to be customized to maximize perfor-
mance. Specifically, the maximum tree depth and
binth would affect the number of generated trees. The
smaller these values, the faster the search within the
tree, but the more trees are generated, the more hard-
ware resources are consumed, and vice versa. The

number of selection bits is similar, because more bits
correspond to more nodes in a tree level, less tree
depth, and faster search speed, but more expansive
node tables, more resource consumption, more com-
plex multiplexers, and lower working frequency. In
experiments, we first generate a series of parameter
combinations and implement them to evaluate the
performance. The parameter combination that
achieves relatively high performance is selected as
the final version, which is relatively balanced between
performance and resource consumption.

The selection of the number of search units is in
direct proportion to the memory access latency, since
more search units can make better use of the time
slots during the latency and improve memory utiliza-
tion. When it reaches a certain value, the search perfor-
mance will not be further improved by continuing to
increase the number, as the time slots for reading
memory are fully filled. This number is also determined
by experiments, which is the minimum value that
almost maximizes the storage read efficiency.

In the following evaluations, the number of select-
able bits, maximum tree depth, and binth (the thresh-
old for the number of leaf node rules) are set to 3, 8,
and 10, respectively. The numbers of search units in
node searcher and rule processor in each search tree
PE are set to 5 and 6 separately. In addition, we further
reduce the number of trees by increasing binth and
the maximum depth settings for trees generated later.
This adjustment is based on an observation: the first
two trees concentrate most of the rules.

Storage Configuration
Because of the distinct characteristics of each rule
set, the resulting storage organizations are different.
To achieve the optimal performance for a specific rule
set, hardware configurations for various rule sets have
been customized and finely tuned. Because our hard-
ware architecture supports real-time rule updates, suf-
ficient spare storage space should be allocated for the
search tree in each PE at the outset in case there are
more insertions than deletions. Hardware configura-
tion mainly involves how to allocate three kinds of
storage resources in FPGA reasonably, namely, ultra
RAM, block RAM, and distributed RAM.

The selection of the three kinds of RAM follows
two principles.

1) They are selected mainly depending on the scale
of the nodes or rules to be stored in each PE. Spe-
cifically, the minimum depth of ultra RAM, block
RAM, and distributed RAM on FPGA is 4096, 512,

March/April 2023 IEEE Micro 115

HOT INTERCONNECTS 29

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on March 14,2023 at 09:26:53 UTC from IEEE Xplore. Restrictions apply.

and 64, respectively. When the number of entries
is large, medium, or very small, the node table
RAM or rule table RAM can be ultra RAM, block
RAM, or distributed RAM, respectively.

2) The resource consumption of the three types of
RAM for implementation should be balanced as far
as possible. If one type of RAM is consumed too
much, some of it will be replaced with other types,
regardless of the actual depth requirements.

In summary, we first roughly allocate three kinds of
memory according to Principle 1, and then fine-tune
them according to Principle 2.

Resource Utilization
Table 2 summarizes the number of accommodated
computing cores, resource usage, and maximum fre-
quencies of hardware implementations of various rule
sets after they are synthesized, placed, and routed. It
is natural to note that memory, including ultra RAM
and block RAM, is the most consumed FPGA resource.

Throughput Evaluation
We evaluate the performance of our FPGA implemen-
tation in terms of throughput, including packet classi-
fication throughput and rule update throughput,
measured in MPPS and MUPS as a unit. We calculate
both types of throughput by simulation. Figure 5(a)
shows classification and update throughput with
respect to the benchmark rule sets. Performance

TABLE 2. Resource utilization for different rule sets.

Rule set Core
num

CLB LUTs
(1,182,240)

CLB Registers
(2,364,480)

BRAM
(2160)

URAM
(960)

Max frequency
(MHz)

acl1_100k 6 607,596 819,039 1815 762 200.08

acl2_100k 6 944,525 1,263,251 2010 738 200.12

acl3_100k 6 589,951 802,639 1494 846 200.00

acl4_100k 6 573,805 741,532 1758 816 200.36

acl5_100k 6 326,950 275,717 1635 576 193.46

ipc1_100 k 6 333,575 472,205 1593 762 199.88

ipc2_100k 7 365,928 415,700 1365 684 200.56

fw1_100k 6 835,036 974,454 1716 936 192.83

fw2_100k 7 330,732 465,005 1519 812 200.20

fw3_100k 6 896,606 1,049,058 1170 564 200.68

fw4_100k 6 84,444 1,243,527 1536 600 201.01

fw5_100k 6 799,875 1,101,059 1524 744 200.76

FIGURE 5. Throughput and latency evaluation for large-scale

rule sets. (a) Classification and update throughput. (b) Classi-

fication latency.

116 IEEE Micro March/April 2023

HOT INTERCONNECTS 29

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on March 14,2023 at 09:26:53 UTC from IEEE Xplore. Restrictions apply.

varies according to different rule types. The classifica-
tion throughput is distributed between 102.3 and 238.3
MPPS, with an average of 182.6 MPPS. On the other
hand, with the exception of the acl2_100k rule set, the
range of update throughput does not fluctuate much,
with an average of 3.1 MUPS. The extremely low
update throughput of the acl2_100k rule set is due to
the fact that it generates the largest number of trees,
and the update is sequential, which results in a long
delay.

Latency Evaluation
We have calculated different latency values per
packet for benchmark rule sets, including average
latency, worst case and best case latencies, and
Figure 5(b) shows the results. Latency is closely
related to several factors, such as the number of trees,
the depth of the tree, the number of leaf node rules,
and memory read latency. Although our latency is not
very advantageous compared to some pure pipeline
designs with only a few stages, it is a tradeoff to sup-
port dynamic rule updates. Nevertheless, we aim to
reduce latency in our future work.

ComparisonWith RelatedWork
Most decomposition-based FPGA implementations
only support rule set scales of no more than 5k,8,9 as
this kind of method requires a large amount of on-chip
memory to implement bit vectors, although they can
achieve high performance in classifying packets. As a
result, these works are not comparable to our design
regarding the rule set scale.

On the other hand, among multiple FPGA-based
decision tree schemes, only Tan et al.12 and Xin
et al.2 implement the evaluation of 100,000 rule sets.
Although Tan et al.12 have a higher classification

performance than our implementation, it does not
support rule updates, a common drawback of most
decision tree based methods. Jiang and Prasanna7

proposed the method of inserting write bubbles to
pipeline memories to enable rule updates. However,
the new contents of the memory are computed off-
line rather than changing dynamically according to
the on-the-fly update orders as in our proposed
method.

The recently proposed TcbTree2 is able to support
on-the-fly rule updates without the need to precom-
pute the updated contents of the memory, similar to
the preliminary version of this article.4 These two
designs adopt different subset partition strategies
and have different performance. However, there is no
comparison provided between the KickTree architec-
ture and TcbTree.

To make up for this deficiency and make a com-
prehensive performance comparison between the
two architectures, three 10k-scale rule sets are com-
plemented and implemented by the KickTree archi-
tecture. Figure 6 shows a variety of performance
comparisons between the two architectures for 10k
and 100k rule sets with seed_1, in terms of classifica-
tion throughput, rule update throughput, and classi-
fication latency. It can be noted that KickTree’s
architecture outperforms TcbTree’s regarding classi-
fication throughput and latency, with 3.4� improve-
ment and 0.5� reduction for 100k rule sets,
respectively.

Although the update performance of our architec-
ture generally lags behind that of TcbTree due to the
sequential nature of our update mechanism, it is still
at the level of MUPS. The exceptional low throughput
of fw_100k rule set for TcbTree is due to the com-
monly generated big leaves (i.e., the leaf nodes con-
tain a large number of rules that cannot be further

FIGURE 6. Comparison between TcbTree and the proposed KickTree architecture. (a) Classification throughput. (b) Update

throughput. (c) Classification latency.

March/April 2023 IEEE Micro 117

HOT INTERCONNECTS 29

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on March 14,2023 at 09:26:53 UTC from IEEE Xplore. Restrictions apply.

segmented), because the rule set has a large number
of overlapping rules.

CONCLUSION
In this article, we designed and implemented an
updatable hardware architecture based on the multi-
tree algorithm KickTree for packet classification.

For various 100k-scale rule sets, experimental
results showed that it could achieve high perfor-
mance in classification because of the parallel-search
design, and the update throughput could also reach
the level of millions per second. In terms of classifica-
tion throughput and latency for 10k- and 100k-scale
rule sets, our architecture vastly outperformed the
recently proposed updatable architecture TcbTree.
Future work will focus on combining multicore with
the fine-grained pipeline to improve classification and
update performance while reducing resource
consumption.

IN THISARTICLE,WEDESIGNEDAND
IMPLEMENTEDANUPDATABLE
HARDWAREARCHITECTUREBASED
ONTHEMULTITREEALGORITHM
KickTree FORPACKETCLASSIFICATION.

ACKNOWLEDGMENTS
This work was supported in part by the Key-Area
Research and Development Program of Guangdong
Province under Grants 2020B0101130003 and
2021B0101400001; in part by the National Key Research
and Development Program of China under Grants
2022ZD0115303 and 2020YFB1806400; in part by NSFC
under Grants 62102203, 61725206, 62150610497, and
62172108; in part by Guangdong Basic and Applied Basic
Research Foundation under Grant 2019B1515120031; in
part by China Postdoctoral Science Foundation under
Grants 2020TQ0158 and PC2021037; and in part by the
Major Key Project of PCL under Grants PCL2021A02,
PCL2021A08, and PCL2021A15.

REFERENCES
1. M. F. Bari et al., “Data center network virtualization: A

survey,” IEEE Commun. Surv. Tuts., vol. 15, no. 2,

pp. 909–928, Apr.–Jun. 2013.

2. Y. Xin, W. Li, G. Tang, T. Yang, X. Hu, and Y. Wang,

“FPGA-based updatable packet classification

using TSS-combined bit-selecting tree,” IEEE/ACM

Trans. Netw., vol. 30, no. 6, pp. 2760–2775, Dec.

2022.

3. Y. Xin, Y. Liu, W. Li, R. Yao, Y. Xu, and Y. Wang,

“KickTree: A recursive algorithmic scheme for packet

classification with bounded worst-case performance,”

in Proc. IEEE/ACM Symp. Archit. Netw. Commun. Syst.,

2021, pp. 23–30.

4. Y. Xin, W. Li, G. Xie, Y. Xu, and Y. Wang, “Updatable

packet classification on FPGA with bounded worst-

case performance,” in Proc. IEEE Symp. High-Perform.

Interconnects, 2022, pp. 21–28.

5. D. E. Taylor, “Survey and taxonomy of packet

classification techniques,” ACM Comput. Surv., vol. 37,

no. 3, pp. 238–275, 2005.

6. W. Li, X. Li, H. Li, and G. Xie, “CutSplit: A decision-tree

combining cutting and splitting for scalable packet

classification,” in Proc. IEEE Conf. Comput. Commun.,

2018, pp. 2645–2653.

7. W. Jiang and V. K. Prasanna, “Scalable packet

classification on FPGA,” IEEE Trans. Very Large Scale

Integr. (VLSI) Syst., vol. 20, no. 9, pp. 1668–1680, Sep.

2012.

8. Y. R. Qu and V. K. Prasanna, “High-performance and

dynamically updatable packet classification engine on

FPGA,” IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 1,

pp. 197–209, Jan. 2016.

9. Y.-K. Chang and C.-S. Hsueh, “Range-enhanced packet

classification design on FPGA,” IEEE Trans. Emerg.

Topics Comput., vol. 4, no. 2, pp. 214–224, Apr.–Jun.

2016.

10. A. Kennedy and X. Wang, “Ultra-high throughput low-

power packet classification,” IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol. 22, no. 2, pp. 286–299,

Feb. 2014.

11. D. E. Taylor and J. S. Turner, “ClassBench: A packet

classification benchmark,” IEEE/ACM Trans. Netw.,

vol. 15, no. 3, pp. 499–511, Jun. 2007.

12. J. Tan, G. Lv, Y. Ma, and G. Qiao, “High-performance

pipeline architecture for packet classification

accelerator in DPU,” in Proc. IEEE Int. Conf. Field-

Programmable Technol., 2021, pp. 1–4.

YAO XIN is an assistant researcher with Peng Cheng Labo-

ratory, Shenzhen, 518055, China. His research interests

include high-performance VLSI design for networking and

deep learning. Xin received a Ph.D. degree from the City

University of Hong Kong, Kowloon Tong, Hong Kong.

Contact him at xiny@pcl.ac.cn.

118 IEEE Micro March/April 2023

HOT INTERCONNECTS 29

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on March 14,2023 at 09:26:53 UTC from IEEE Xplore. Restrictions apply.

WENJUN LI is a postdoctoral fellow at Harvard University,

Allston, MA, 02134, USA, and an associate researcher at Peng

Cheng Laboratory, Shenzhen, 518055, China. His research

interests include programmable network data plane and net-

work algorithms. Li received a Ph.D. degree from Peking Uni-

versity, Beijing, China. He is the corresponding author of this

article. Contact him at wenjunli@g.harvard.edu.

GAOGANG XIE is a professor with the Computer Network

Information Center of the Chinese Academy of Sciences,

Beijing, 100083, China. His research interests include

Internet architecture, packet processing and forwarding,

and Internet measurement. Xie received a Ph.D. degree

from Hunan University, Changsha, China. Contact him at

xie@cnic.cn.

YANG XU is with Peng Cheng Laboratory, Shenzhen, 518055,

China. He is also the Yaoshihua Chair Professor at Fudan Uni-

versity, Shanghai, 200433, China. His research interests

include software defined networking, dater center network,

network function virtualization, and edge computing. Xu

received a Ph.D. degree from Tsinghua University, Beijing,

China. Contact him at xuy@fudan.edu.cn.

YI WANG is with Peng Cheng Laboratory, Shenzhen, 518055,

China. He is also a research professor at the Southern Univer-

sity of Science and Technology, Shenzhen, 518055, China. His

research interests include future network architectures and

high-performance network devices. Wang received a Ph.D.

degree from Tsinghua University, Beijing, China. Contact him

at wangy37@sustech.edu.cn.

March/April 2023 IEEE Micro 119

HOT INTERCONNECTS 29

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on March 14,2023 at 09:26:53 UTC from IEEE Xplore. Restrictions apply.

li
高亮

	Front_Cover
	KickTree_Micro2023

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

