
Computer Networks 164 (2019) 106898

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

A power-saving pre-classifier for TCAM-based IP lookup

✩

Wenjun Li a , b , ∗, Dagang Li a , c , Xinwei Liu

a , Ting Huang

a , Xianfeng Li a , Wenxia Le

d , Hui Li a , b

a School of Electronic and Computer Engineering, Peking University, Shenzhen, China
b Peng Cheng Laboratory, Shenzhen, China
c PKU-HKUST ShenZhen-HongKong Institution, Shenzhen, China
d Network Energy Department, Huawei Technologies Co., Ltd, Shenzhen, China

a r t i c l e i n f o

Article history:

Received 5 November 2018

Revised 2 August 2019

Accepted 7 September 2019

Available online 9 September 2019

Keywords:

IP routing table lookup

TCAM

Range encoding

Power reduction

Memory efficient

a b s t r a c t

Ternary Content Addressable Memory (TCAM) is widely used for designing high-throughput forwarding

engines on most of today’s high-end routers. Despite its capability for line-speed queries, it is very power

hungry and space inefficient. By making use of a pre-classifier to activate TCAM blocks selectively, MEET-

IP, a recently proposed TCAM based IP lookup scheme, significantly improves the utilization of TCAMs.

However, it suffers from performance degradation because it uses a two-level pre-classifier. In this pa-

per, we propose SplitIP, a memory and power efficient TCAM-based scheme for IP routing table lookup.

We first transform the IP lookup problem to a point location problem through a routing table projection.

Based on the projection, we propose a top-down splitting algorithm to separate routing table prefixes

evenly into TCAM blocks. Finally, a simpler one-level classifier is constructed for fast pre-classification

using improved range encoding techniques. The top-down prefix partitioning algorithm combined with

the database independent encoding scheme provides an incremental update for SplitIP. Experimental re-

sults show that our design achieves more than 97% power reduction with a TCAM storage overhead of

less than 3% on average.

© 2019 Elsevier B.V. All rights reserved.

1

i

t

m

p

r

m

(

b

t

e

i

c

t

C

P

L

l

(

p

b

s

s

h

H

m

h

h

r

e

a

(

h

1

. Introduction

IP routing table lookup is one of the critical issues in design-

ng high-performance routers. It is a challenging problem due to

he following aspects: (1) the size of the routing table has become

ore than half a million and keeps growing [40] ; (2) cloud com-

uting and network applications are pushing the line rate of core

outers to 400Gbps or even higher; (3) one IP address may match

ultiple prefixes when performing the Longest Prefix Matching

LPM); (4) the deployment of IPv6 will lead to larger routing ta-

les with longer prefixes. With the exponential growth of the In-

ernet, these challenges become even stronger than ever, therefore,

fficient and scalable solutions for IP lookup are still under active

nvestigation.
✩ The preliminary version of this paper titled “MEET-IP: Memory and Energy Effi-

ient TCAM-based IP Lookup” was published in the proceedings of the 26th Interna-

ional Conference on Computer Communications and Networks (ICCCN), Vancouver,

anada, July, 2017 [56] .
∗ Corresponding author at: School of Electronic and Computer Engineering,

eking University, Shenzhen, China.

E-mail addresses: wenjunli@pku.edu.cn (W. Li), dgli@pku.edu.cn (D.

i), lxw0724@pku.edu.cn (X. Liu), huangting53@pku.edu.cn (T. Huang),

ixianfeng.sz@pku.edu.cn (X. Li), lewenxia@huawei.com (W. Le), lih64@pku.edu.cn

H. Li).

d

s

T

t

[

T

d

t

i

ttps://doi.org/10.1016/j.comnet.2019.106898

389-1286/© 2019 Elsevier B.V. All rights reserved.
Numerous IP routing table lookup techniques have been pro-

osed in the past twenty years [16,39] . They can be categorized

roadly into two major approaches: software-based algorithmic

olutions and hardware-based architectural solutions. Algorithmic

olutions using ordinary memories and commercial processors

ave been well studied because they are cheap and flexible.

owever, despite extensive research efforts, most of them are

emory and performance inefficient, falling short of the needs of

igh-speed networks. Thus, architectural solutions using special

ardware, such as TCAM and FPGA, have become the de-facto

oute in the industry for designing high-throughput forwarding

ngines on high-end routers. Among the hardware used in major

rchitectural solutions, Ternary Content Addressable Memory

TCAM) is regarded as a promising device and has been widely

eployed in existing network devices.

TCAM is a fully associative memory that allows a “don’t care”

tate to be stored in each memory cell in addition to 0s and 1s.

his feature makes it particularly attractive for packet classifica-

ion and routing table lookup that require longest prefix matches

2] . When a destination address is presented to the TCAM, each

CAM entry is searched in parallel and the longest matching ad-

ress prefix is returned. Thus, a single TCAM access is sufficient

o perform a routing table lookup. Moreover, TCAM-based table

s much simpler to manage and update than those implemented

https://doi.org/10.1016/j.comnet.2019.106898
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2019.106898&domain=pdf
mailto:wenjunli@pku.edu.cn
mailto:dgli@pku.edu.cn
mailto:lxw0724@pku.edu.cn
mailto:huangting53@pku.edu.cn
mailto:lixianfeng.sz@pku.edu.cn
mailto:lewenxia@huawei.com
mailto:lih64@pku.edu.cn
https://doi.org/10.1016/j.comnet.2019.106898

2 W. Li, D. Li and X. Liu et al. / Computer Networks 164 (2019) 106898

2

p

c

4

b

s

c

s

f

[

a

I

i

M

o

i

h

l

o

l

[

T

a

b

c

t

a

a

p

b

a

d

d

T

2

e

f

b

o

s

a

v

p

p

t

T

a

l

b

d

t

I

h

p

t

i

s

b

w
using SRAM/DRAM [23,37,48] . Despite its high speed and ease of

management, TCAM has its own limitations with respect to IP

routing table lookup. First, TCAM has limited capacity and is not

expected to increase dramatically in the near future. Second, TCAM

chips consume large amount of power. For example, a typical 1Mb

TCAM chip can consume up to 15-30 Watts of power, which is

roughly 150 times more power per bit than SRAM [30] . Third,

TCAM is very expensive and normally contributes a significant frac-

tion to the total cost of network devices [10] .

In recent years, leading TCAM vendors have provided block-

based TCAM designs, where the TCAM device is partitioned into

fix-sized blocks, and a subset of them can be activated for lookups

when needed. This improved design provides a good substrate for

potential power reduction. Many research effort s exploit this fea-

ture to optimize the power consumption of TCAM-based forward-

ing engines. Authors of CoolCAMs [13] proposed an architecture

to partition the entire routing table into multiple sub-tables or

buckets, where each bucket is laid out over one or more TCAM

blocks. SmartPC [65] , one of well-known works targeting blocked

TCAM, introduced a pre-classifier with the idea of expanding and

combining original classifier rules based on their IP address loca-

tions. However, these effort s achieve power saving at the expense

of poor utilization of TCAM capacity (i.e., idle memory holes in the

TCAM blocks), and the potential of power reduction is not fully ex-

ploited in many cases. In order to support incremental updates,

the author of paper [61] proposed a new partitioning algorithm

based on the prefix comparison, which can split the routing table

into a fixed number of buckets as evenly as possible, but it may

suffer from performance degradation because of its binary search

based pre-classifier. Recently, GreenTCAM [59] achieves more en-

ergy reduction and solves the problem of poor TCAM utilization in

SmartPC, yet it cannot be well applied to IP lookup. MEET-IP, the

preliminary version of this paper, significantly improves the uti-

lization of TCAMs using a top-down pre-classifier, but its two-level

pre-classifier is rather complicated performance-wise. Therefore,

although the 2-stage framework with pre-classifier is a promis-

ing solution for power-efficient TCAMs, as far as we know, exist-

ing approaches still lack of a smart pre-classifier which can make

excellent balance among power consumption, memory utilization,

search performance and update performance.

In this paper, we propose SplitIP, a 2-stage TCAM-based scheme

for IP routing table lookup. In the first stage, each incoming IP

address is classified by a one-level pre-classifier (or index table),

which provides information on which TCAM block to be activated

in the next stage; in the second stage, the TCAM block from the

first stage is activated and searched for a match. We identified

three main challenges when designing the pre-classifier of our

schemes: (1) minimum TCAM holes when accommodating large

number of table entries; (2) effective mapping of pre-classifier en-

tries onto TCAM blocks; (3) quick index search mechanism during

the pre-classification. To solve these problems, we first transform

the LPM problem to a point location problem through routing pre-

fixes projection. After then, we propose a global top-down parti-

tion algorithm to effectively separate the projected prefixes evenly

into TCAM blocks. Finally, a range encoding based pre-classifier is

used to quickly select the right TCAM blocks to activate. The simple

top-down prefix projection makes SplitIP much easier to achieve

efficient partitioning and to support fast incremental updates. Ex-

perimental results show that our design achieves more than 97%

power reduction with a TCAM storage overhead of less than 3% on

average.

The rest of the paper is organized as follows. Section 2 briefly

summarizes the related work and challenges. Sections 3 and

4 present the technical details of our work. Section 5 provides our

experimental results. Finally, Section 6 draws conclusions on this

work.
s
. Related work and challenges

A lot of software-based algorithmic approaches have been pro-

osed for IP lookup in the past twenty years. In general, they

an be categorized into trie-based algorithms [14,20,28,42,45–

7,49,50,52,54] , hash-based algorithms [11,17,24,44] and range-

ased algorithms [7,29,66] . However, most approaches still fall

hort of providing satisfactory lookup performance. Thus, ar-

hitectural solutions using special hardware have been wildly

tudied in recent years. Based on their implementation plat-

orms, we can categorize prior works into TCAM-based algorithms

12,22,23,25,26,38] , FPGA based algorithms [17,27] and GPU-based

lgorithms [41,64] . Among them, TCAM has been widely used for

P routing table lookup and packet classification because of its abil-

ty to allow a “don’t care” state and process packet at line-speed.

oreover, TCAM-based solutions are much easier to manage than

ther hardware-based solutions.

Despite these advantages, this brutal force hardware solution

s not only expensive and space inefficient, but also very power-

ungry. Besides, TCAM also suffers from severe expansion prob-

em when storing ranges. During the past decade, a lot meth-

ds and algorithms had been proposed to alleviate these prob-

ems, such as classifier minimization [3–6] and range encoding

1,15,18,21,31,35,58,62,63] . To reduce the power consumption of

CAMs, the latest TCAM devices from leading vendors come with

 power saving mechanism where a subset of its TCAM blocks can

e selectively activated. A TCAM block is a contiguous, fixed-size

hunk of TCAM entries, much smaller than the size of the en-

ire TCAM. Recent research efforts exploit this feature to construct

 2-stage power-efficient TCAMs and introduce a pre-classifier to

ctivate TCAM blocks selectively [9,13,56,59,65] . In this paper, we

ropose a more efficient pre-classifier called SplitIP by combining

lock-based TCAM designs with range-based lookup algorithms in

 novel way, so that TCAM solutions can achieve huge power re-

uction without heavy TCAM storage waste. Next, we give a more

etailed review on several representative 2-stage power-efficient

CAMs.

.1. 2-stage Power-efficient TCAMs

CoolCAMs [13] is one of the most representative 2-stage power-

fficient TCAM-based routing table lookup algorithms. The key idea

or the CoolCAMs architecture is to partition the entire routing ta-

le into multiple sub-tables or buckets, where each bucket is laid

ut over one or more TCAM blocks. Two different table-splitting

chemes have been proposed, which are bit selection architecture

nd tire-based table partitioning. Bit selection architecture pro-

ides a straightforward technique for power reduction with sim-

le extra hardware requirement. Based on observation that most

refixes in core routing tables are between 16 and 24 bits long,

he bit selection architecture puts the special prefixes into a set of

CAM blocks to search on every lookup, and the remaining prefixes

re partitioned into buckets which is selected by hashing for each

ookup. However, this technique has some drawbacks such as terri-

le worst-case bounds and unsustainable assumptions about prefix

istribution. To improve on these drawbacks, tire-based table parti-

ioning algorithm has been proposed, using a prefix trie to get the

D of the right TCAM bucket. Two different partitioning schemes

ave been proposed: subtree-split and post-order split. During the

artitioning step of the subtree-split algorithm, the prefix trie is

raversed in post order looking for a covering node, whose count

s at least half of the TCAM bucket size. The drawback of subtree-

plit algorithm is that the smallest and largest bucket sizes vary

y as much as a factor of 2, leading to poor memory utilization

ith a lot of holes in the TCAM blocks. Assuming a TCAM block

ize of 4, Fig. 1 shows a partition example of subtree-split based

W. Li, D. Li and X. Liu et al. / Computer Networks 164 (2019) 106898 3

Fig. 1. A partition example of CoolCAMs (subtree-split algorithm).

C

t

d

t

s

o

c

t

t

b

s

s

b

i

T

i

g

o

2

t

f

t

l

c

T

w

m

i

s

i

e

s

r

e

t

t

s

s

p

a

e

a

l

b

o

r

s

i

c

t

c

r

b

m

w

2

a

s

c

b

s

d

t

m

A

s

w

g

a

d

v

w

e

3

c

a

p

a

t

r

w

l

p

f

s

r

a

1

C

3

d

t

b

s

b

s

oolCAMs. It first selects the leftmost bottom prefix P 3 as the ini-

ial covering index prefix, and then tries to cover more prefixes by

oubling the covering range (i.e., index 1) each time. When index 1

ries to cover prefix node a in step 4, three prefixes (i.e., P 4 , P 5 , P 6)

hould be included simultaneously, which will cause an overflow

f a TCAM block. Thus, only two prefixes in step 3 (i.e., P 2 , P 3)

an be stored in the TCAM block, leaving the remaining two en-

ries in idle. Post-order split algorithm eliminates the TCAM holes

hrough even routing table partitioning, where each partitioned

ucket is constructed from a collection of subtrees, rather than a

ingle subtree as in the case of subtree-split algorithm. However,

uch an even partition comes at the extra cost of a larger num-

er of entries in the index TCAM which are used to store indexes

n the first stage pre-classifier (at most W + 1 index entries for one

CAM block, where W is the maximum prefix length in the rout-

ng table). With the continuous growth of routing table size and

radual deployment of IPv6, the problem of index TCAM storage

verhead will become more severe. MEET-IP, a recently proposed

-stage power-efficient TCAMs for IP lookup, significantly improves

he utilization of TCAMs by constructing a top-down pre-classifier

or routing tables. In MEET-IP, each incoming address is presented

o the index TCAM for retrieving the best matching prefix, fol-

owed by some extra comparisons in RAM. Thus, its two-level pre-

lassifier may not be favorable performance-wise.

SmartPC [65] , another well-known 2-stage power-efficient

CAM scheme, introduces a pre-classifier for packet classification,

here each incoming packet is forwarded according to a set of

ulti-field rules. The basic idea for the pre-classifier construction

s to divide the whole source-destination dimensional space into

ome non-intersecting sub-spaces, each covering a subset of rules

nside it. In SmartPC, each pre-classifier entry is constructed by

xpanding and combining original classifier rules based on their

ource-destination address locations. More exactly, it starts with a

andomly selected free rule (not yet included in any pre-classifier

ntry), and the initial sub-space covered by this entry corresponds

o the rectangle formed by the source and destination fields of

he selected rule. Then, the sub-space continues its space expan-

ion until the subset of rules completely covered by the current

ub-space reaches the limit of the TCAM block size, and rules

artly intersected with the current sub-space will be regarded

s general rules to search for every lookup. When the sub-space
xpansion process completes, a pre-classifier entry can be gener-

ted for the sub-space, and a corresponding TCAM block is al-

ocated for the contained subset of rules. Clearly, this random

ottom-up way of generating pre-classifier lacks the global view

n the relationship of rules, leading to a large number of general

ules and TCAM holes. Recently, GreenTCAM [59] is proposed to

olve the problem of poor utilization of TCAM capacity suffered

n SmartPC. Based on the observation that most classifier rules

ontain at least one ‘small’ IP address field [55,57] , it separates

he original classifier table into several sub-tables and builds pre-

lassifier for each sub-table. GreenTCAM achieves a 93.6% energy

eduction with a TCAM storage overhead of 5.6% on average, much

etter than that of SmartPC. However, its two-level pre-classifier

ay also lead to performance degradation. Besides, it cannot be

ell applied to IP lookup.

.2. Challenges and motivation

According to the discussions above, the 2-stage framework is

 promising approach for power-efficient TCAMs, where the first

tage is a pre-classification and the second is a selective post-

lassification. With the help of pre-classification, only a few TCAM

locks containing the candidates will be activated in the second

tage, rather than comparing against all TCAM entries blindly. Un-

er this framework, the critical challenge is how to build an effec-

ive pre-classifier, such that the original table can be well accom-

odated into TCAM blocks as compact and efficient as possible.

t the same time, since the pre-classifier itself also needs to be

tored and searched, the pre-classifier itself should be small and

ell suited for fast pre-classification.

Currently, most existing pre-classifiers are built in a locally

reedy heuristic way, and their bottom-up approach restricts their

bility for global optimization. In this paper, we propose a top-

own framework, which can process the prefixes from a global

iew to achieve a more effective pre-classifier. The whole frame-

ork includes global address projection, block splitting and range

ncoding. More details will be given in the following two sections.

. SplitIP: a 2-stage top-down framework

In this section, we present SplitIP, a memory and power effi-

ient scheme for TCAM based IP routing table lookup, which can

lso be applied to IPv6. We first transform the LPM problem into a

oint location problem through routing table projection, generating

 set of elementary intervals from the address prefixes. Based on

hese elementary intervals, we propose a top-down splitting algo-

ithm that can evenly separate routing prefixes into TCAM blocks

ith minimum memory holes and indexing TCAM entries, much

ess than in CoolCAMs and SmartPC. Finally, a simpler one-level

re-classifier based on range encoding techniques is constructed

or the TCAM blocks, where each index range can be split into two

ub-ranges, and adopts different encoding techniques adaptively to

educe edcoded TCAM entries. For the convenience of description

nd comparison, the example of a 7-bit routing table containing

2 address prefixes from Table 1 is used, which was also used in

oolCAMs.

.1. LPM Problem → point location problem

A network address prefix is commonly indicated as a pair of ad-

ress/prefix length , where only the most significant bits indicated by

he prefix length are used for matching, and the rest least wildcard

its (∗) are simply ignored. In essence, each address prefix corre-

ponds to a range of values, where the lower bound and upper

ound can be obtained by setting the wildcards to 0s and 1s re-

pectively, as shown in the column of prefix ranges in Table 1 .

4 W. Li, D. Li and X. Liu et al. / Computer Networks 164 (2019) 106898

Table 1

A sample routing table.

Routing table Prefix database (7 bits in length) Next Hop

Prefix bit strings Prefix ranges

P 1 0 ∗∗∗∗∗∗ [0, 63] hop1

P 2 0100 ∗∗∗ [32,39] hop2

P 3 01000 ∗∗ [32, 35] hop3

P 4 0110 ∗∗∗ [48, 55] hop4

P 5 01100 ∗∗ [48, 51] hop5

P 6 01101 ∗∗ [52, 55] hop6

P 7 10 ∗∗∗∗∗ [64, 95] hop7

P 8 1101 ∗∗∗ [104, 111] hop8

P 9 110100 ∗ [104, 105] hop9

P 10 110101 ∗ [106, 107] hop10

P 11 11011 ∗∗ [108, 111] hop11

P 12 110111 ∗ [110, 111] hop12

Fig. 2. Routing table projection from a geometric point of view.

Fig. 3. LPM problem → point location problem.

Table 2

Elementary intervals and corresponding prefixes.

Elementary

intervals

Corresponding matching prefixes

Covered prefixes Best matching prefix

[0, 31] P 1 P 1
[32 , 35] P 1 , P 2 , P 3 P 3
[36, 39] P 1 , P 2 P 2
[40, 47] P 1 P 1
[48, 51] P 1 , P 4 , P 5 P 5
[52, 55] P 1 , P 4 , P 6 P 6
[56, 63] P 1 P 1
[64, 95] P 7 P 7
[96, 103] NULL NULL

[104, 105] P 8 , P 9 P 9
[106, 107] P 8 , P 10 P 10

[108, 109] P 8 , P 11 P 11

[110, 111] P 8 , P 11 , P 12 P 12

[112, 127] NULL NULL

i

c

a

F

s

s

e

e

l

3

h

b

a

e

i

i

t

m

i

b

d

e

o

t

r

i

s

s

e

t

t

a

o

t

F

b
The range of an address prefix may be contained by the range

of another address prefix, if and only if the latter is a prefix of

the former. For example, by projecting the address prefixes in

Table 1 onto a number line, we find that P 2 , P 3 , P 4 , P 5 and P 6 are

all contained by P 1 , as the prefix 0 ∗ of P 1 is a prefix of P 2 , P 3 , P 4 ,

P 5 and P 6 . Because of this property of the routing table, an IP ad-

dress may match multiple prefixes. In this case, the longest prefix,

which is most specific range containing the IP address, will be the

best match. Algorithms finding the best match are thus called the

Longest Prefix Matching (LPM) algorithms.

With the projection of address prefixes in Fig. 2 , a set of end-

points (i.e., a, b, c…, m, n, p) can be identified to split the whole

number line into a set of contiguous and disjoint intervals. These

intervals are called elementary intervals which can be defined for-

mally as follows:

Definition 1. (Elementary intervals): For W -bit address space of

0 to 2 W −1, it can be divided into a set of k elementary intervals

E = { X i | X i = [l i , r i], for i = 1 to k }, E satisfy the following:

(1) l 1 = 0 and r k = 2 W −1,

(2) r i = l i + 1 −1 for i = 1 to k − 1.

By introducing elementary intervals, the routing table lookup

can be viewed as a problem of point location among a set of con-

tiguous and non-overlapping elementary intervals. Therefore, given

an incoming IP address, the first step is to decide the elementary

interval where the IP address is located. Unlike the original LPM

problem, there will only be one unique matching for this IP ad-

dress in terms of elementary interval. The second step is to decide

the best address prefix from all prefixes that cover the elementary

interval obtained from the first step. For example, with an IP ad-

dress of 010 0 0 01 , the elementary interval [b, c] in Fig. 2 is selected,

then among the three prefixes P 1 , P 2 and P 3 covering [b, c], the

best matching prefix is P 3 as it is the most specific prefix for [b,

c], and in turn the most specific prefix for IP address 010 0 0 01 . The

correctness of this two-step algorithm comes from an important

fact: all address values (points) in one elementary interval share

the same set of address prefixes covering the whole interval. That
s why we can turn the LPM problem into an equivalent point lo-

ation problem. Fig. 3 and Table 2 show all elementary intervals

nd corresponding matching prefixes for routing table projection in

ig. 2 .

Based on this transformation, an elementary interval based

plitting algorithm for routing tables can be developed, which can

eparate prefixes evenly into blocks without any TCAM holes (idle

ntries). Intuitively, one dimensional partition problem based on

lementary intervals is often easier to handle than the original 32-

evel separating problem, as we will see in the next subsection.

.2. Top-down splitting algorithm

One of the key issues in power-efficient routing table lookup is

ow to separate all routing prefixes into a set of TCAM blocks and

uild a pre-classifier for these blocks. In this subsection, we detail

n elementary interval based top-down splitting algorithm, with

ach split interval containing at most TBsize prefixes, where TBsize

s the TCAM block size (except possibly the last one subset).

The rationale behind our routing table partitioning algorithm

s simple: by transforming addresses into a set of elementary in-

ervals, we can simply generate index ranges for TCAM blocks by

erging neighboring elementary intervals recursively. More specif-

cally, we first select the leftmost elementary interval in the num-

er line (not included in any existing index range) as the first in-

ex range. Then, this index range is expanded by moving its right

nd point to another right-side projection endpoint, with exactly

ne more elementary interval included or completely covered each

ime, until the subset of prefixes included by the current index

ange reaches the capacity limit of a TCAM block (i.e., one more

ncluded elementary interval should cause block overflow). At the

ame time, a corresponding TCAM block can be allocated for the

ubset of prefixes that are included. For all included prefixes in

ach TCAM block, they need to be stored in descending order of

heir priorities. These two steps will be repeated until all elemen-

ary intervals are processed. It is easy to see that each gener-

ted index range is a combination of several consecutive and non-

verlapping smaller elementary intervals.

Take elementary intervals of Fig. 3 as an example to describe

he above merging method intuitively (assuming the TBsize = 4).

irst, the left-most elementary interval [a, b] is selected, and the

est matching prefix P is included by the initial index range. In
1

W. Li, D. Li and X. Liu et al. / Computer Networks 164 (2019) 106898 5

Table 3

Index range table.

Index ranges Included elementary intervals TCAM block blocks

[0, 51] [0, 31] , [32, 35] , [36, 39] , [40, 47] , [48, 51] 1 st block: {P 3 , P 5 , P 2 , P 1 }

[52, 105] [52, 55] , [56, 63] , [64, 95] , [96, 103] , [104, 105] 2 nd block: {P 9 , P 6 , P 7 ,P 1 }

[106, 127] [106, 107] , [108, 109] , [110, 111] , [112, 127] 3 rd block: {P 10 , P 12 , P 11 }

Fig. 4. Routing table partition with a TCAM block size of 4.

o

m

r

c

m

p

c

d

t

p

t

P

i

r

i

s

i

v

t

i

p

l

T

m

r

i

d

i

s

v

t

m

t

t

i

s

t

v

f

d

t

p

t

r

p

i

r

s

Fig. 5. Elementary interval based routing table splitting algorithm.

Fig. 6. The architecture of MEET-IP.

3

a

t

f

a

e

i

t

l

F

d

e

c

s

o

M

i

d

e

s

T

i

i

rder to accommodate more prefixes, the index range [a, b] then

oves its right end point from endpoint b to c , and so the index

ange becomes [a, c]. At this point, two elementary intervals are

ompletely covered by the new index range containing two best

atching prefixes (i.e., P 1 and P 3). Since the number of included

refixes is still smaller than the block size, the current index range

ontinues to move its right end point to produce a larger new in-

ex range, which may cover more not-yet-included elementary in-

ervals. When the index range moves its right end point to end-

oint f , the new index range [a, f] will include five elementary in-

ervals containing four unique best matching prefixes (i.e., P 1 , P 2 ,

 3 , P 5), reaching the capacity limit of a TCAM block. Thus, the first

ndex range expansion process stops at endpoint f , and the index

ange [a, f] is generated with four best matching prefixes stored in

ts corresponding TCAM block.

After that, a new index range expansion process repeats the

teps above by setting the index range to be the left-most not-yet-

ncluded elementary interval, until all remaining elementary inter-

als are processed. Table 3 and Fig. 4 show all index ranges and

he elementary intervals they include, as well as the correspond-

ng TCAM blocks.

As can be seen from Table 3 , the routing table can be evenly

artitioned into three TCAM blocks, with each block except the

ast one containing as many prefixes as a TCAM block can hold.

his fine characteristic derives from the simple one-dimensional

erging method which can include at most one prefix at a time,

ather than an exponential order of prefixes as in CoolCAMs us-

ng subtree-split algorithm. Essentially, our splitting algorithm is

erived from the global top-down partitioning method (i.e., rout-

ng table projecting), with more insights into the prefix relation-

hip. As described above, all address values in an elementary inter-

al share the same set of address prefixes covering each of them,

herefore, at most one prefix can be included by adding an ele-

entary interval each time, achieving a more precise control over

he expansion.

It is not difficult to see that a prefix can be separated into mul-

iple blocks, because it may span multiple index ranges (e.g., P 1
n Table 3), and such duplicated prefixes may introduce additional

torage overhead. Fortunately, in real routing tables, the propor-

ion of such duplicated prefixes is almost negligible, which can be

erified from our following experimental results. Essentially, this

eature comes from a well-known observation about prefix length

istribution, that is, there are very few routes with prefixes longer

han 24-bit [36,47,66] . For ease of evaluation, we can define this

refix replication factor as blocking replication , which can be ob-

ained by the following formula: (routing table size + #duplicated

ules)/routing table size . Thus, the blocking replication of our sam-

le routing table is 13/12. More evaluation results for real rout-

ng tables can be seen in Section 5.3 . The pseudo code for above

outing table splitting and pre-classifier construction algorithm is

hown in Fig. 5 .
.3. One-level pre-classifier based on encodings

A pre-classifier can now be constructed with the consecutive

nd non-overlapping index ranges generated from the above split-

ing algorithm to quickly classify incoming IPs into TCAM blocks

or high-speed post-classification. For each incoming destination

ddress, a pre-classifier should be able to return an index ID that

xplicitly indicates the right TCAM block to obtain the best match-

ng result. The key issue is how to perform a high-speed lookup in

he first pre-classification phase.

Based on the concept of Longest Common Prefix (LCP), a two-

evel TCAM pre-classifier is proposed in MEET-IP as illustrated in

ig. 6 . In MEET-IP, each incoming address is presented to the in-

ex TCAM for retrieving the best matching LCP , followed by some

xtra comparisons in RAM. According to the ID obtained from pre-

lassification, a second TCAM lookup is performed on its corre-

ponding TCAM block, where the longest matching prefix can be

btained with the next hop information in its associated RAM.

ore details can refer to [56,60] .

Although MEET-IP produces just one index for each TCAM block,

ts complicated two-level pre-classifier may result in performance

egradation. Based on the observation that the number of gen-

rated index ranges is much less than routing table size, we can

imply encode each index range into an equivalent set of prefixes.

hus, we introduce a one-level pre-classifier based on the follow-

ng described SplitCoding, which is a practical TCAM range encod-

ng scheme. Fig. 7 shows the architecture of SplitIP.

6 W. Li, D. Li and X. Liu et al. / Computer Networks 164 (2019) 106898

Fig. 7. The architecture of SplitIP.

Fig. 8. A sample of SplitCoding for 8-bit range R = [97, 171].

L

e

D

b

M

t

L

w

b

a

4

c

t

p

1

l

0

c

e

n

c

n

p

T

i

a

0

4

l

L

[

b

i

d

t

a

o

0

L

s

e

e

‘

U

p

r

1

4

g

s

i

4. SplitCoding for fast pre-classification

In this section, we introduce a simple TCAM range encoding

scheme called SplitCoding, which is not only better in terms of

range expansion but also easier to understand and much more

practical to implement. Instead of adopting complex recursive al-

gorithms as in previous approaches, all encoded prefixes in Split-

Coding can be easily obtained in linear time by counting 0/1-bit

of the range endpoints. More background about internal, external

and optimal range encodings can refer to [31–35,53] . In addition,

we prove that the upper-bound on the TCAM worse-case range ex-

pansions in SplitIP is K(W −log 2 K + 1) , better than K(W + 1) in Cool-

CAMs, where K is the number of index ranges (i.e., #used TCAM

blocks) and W is the bit width of addresses in SplitIP. For the con-

venience of description, we use the 8-bit range R ab = [97, 171] as

a discussion example in this section as shown in Fig. 8 .

4.1. Notations

Definition 2. (Range, width, length): A range is a contiguous inter-

val of integers [a, b], where each integer is of W bits wide and its

two range endpoints satisfy a ≤ b . For a range R ab = [a, b], its range

length L = log 2 (b − a + 1) . For example, for an interval R 1 = [80,

1024] in IPv4 address space, we can say that R 1 is a 32-bit range

of length 10.

Definition 3. (Longest Common Prefix: LCP): LCP ab is the longest

prefix that covers the range R ab = [a, b]. If prefixes are il-

lustrated in the binary trie, LCP ab is the lowest common an-

cestor of a and b . As illustrate in Fig. 8 , for the 8-bit range

R am

= [97, 127] = [011 0 0 0 01, 011 11111], its longest common prefix

LCP am

= R pm

= 011 ∗∗∗∗∗, where endpoint P is the leftmost value

of LCP am

.

Definition 4. (Splitting endpoint): For rang R ab = [a, b], there are

two splitting endpoints for R ab (one if a = b), where the value of

these endpoints are the middle values of LCP ab . For the 8-bit range

R = [97, 171] = [0110 0 0 01, 10101011], the two middle values of
ab
CP ab are 127 and 128, because LCP ab =

∗∗∗∗∗∗∗∗. Thus, the splitting

ndpoints for range R ab are m and n , where m = 127 and n = 128.

efinition 5. (Extremal range, generalized extremal range): A W -

it range R ab = [a, b] is called extremal range if a = 0 or b = 2 W −1 .

ore broadly, R ab is called generalized extremal range if integer a is

he leftmost value of LCP ab , or integer b is the rightmost value of

CP ab . For example, R 0(a-1) = [0, a −1] is an extremal range in Fig. 8 ,

hile R am

= [a, m] and R nb = [n, b] are generalized extremal ranges ,

ecause m and n are the rightmost and leftmost values for LCP am

nd LCP nb , respectively.

.2. Related encodings

Internal encoding : In internal encoding scheme, the W -bit range

an be completely divided into at most 2W −2 successive and con-

iguous sub-ranges, where each sub-range can be represented as a

refix with an action of Accept [53] . Take the 8-bit range R am

= [97,

27] shown in Fig. 8 as an example, it can be encoded into fol-

owing five 8-bit prefixes: { 0111 ∗∗∗∗, 01101 ∗∗∗, 011001 ∗∗, 0110 0 01 ∗,

110 0 0 01 } → Accept . A sample implementation of the internal en-

oding scheme can refer to the Fig. 2 shown in paper [59] .

External encoding: By exploiting the characteristic of order of the

ntries in TCAMs (i.e., output the first matching entry), the exter-

al encoding scheme can reduce the worst-case number of en-

oded prefixes from 2W −2 to W [35] . For each range using exter-

al encoding scheme, its complementary ranges are encoded into

refixes with an action of Deny , following with an Accept prefix.

hen, it choose the better one compared with the internal encod-

ng scheme. Also take the range R am

shown in Fig. 8 as an ex-

mple, it can be encoded into two prefixes: 0110 0 0 0 0 → Deny and

11 ∗∗∗∗∗ → Accept , better than that in internal encoding scheme.

.3. Related lemmas

Before describing the key steps of SplitCoding, we first give two

emmas which have been stated and proved in previous paper [8] .

emma 1. The smallest number of ternary entries that span range

0, b] is equal to the number of 1-bits in (b + 1). These entries can

e simply derived in linear time by respectively replacing each 1-bit

n (b + 1) with 0-bit and padding all the following bits with ‘ ∗’. More

etails can refer to [9] .

Take the extremal range [0, 96] in Fig. 8 as example. With in-

ernal encoding, it can be encoded into minimally three prefixes,

s there are three 1-bits in 0 11 0 0 0 0 1 , the binary representation

f 97 , and the three encoded prefixes are 0 0 ∗∗∗∗∗∗, 01 0 ∗∗∗∗∗ and

110 0 0 0 0 .

emma 2. For any a > 0, the smallest number of ternary entries that

pan range [a, 2 W −1] is equal to the number of 0-bits in (a −1). These

ntries can be simply derived in linear time by respectively replacing

ach 0-bit in (a −1) with 1-bit and padding all the following bits with

∗’. More encoding details can refer to [9] .

Take the extremal rangeR = [172, 2 8 −1] in Fig. 8 as example.

sing internal encoding, it can be encoded into minimally three

refixes, becasue there are three 0-bits in 1 0 1 0 1 0 11 , the binary

epresentation of 171, and the three encoded prefixes are 1 1 ∗∗∗∗∗∗,

01 1 ∗∗∗∗ and 10101 1 ∗∗.

.4. Key encoding steps

We now introduce the three key steps of SplitCoding for the

eneral range R = [a, b], where a < b . The encoding details for the

ample 8-bit range R = [a, b] = [97, 171] from Fig. 8 are illustrated

n Fig. 9 . The pseudo code for SplitCoding is shown in Fig. 10 .

W. Li, D. Li and X. Liu et al. / Computer Networks 164 (2019) 106898 7

Fig. 9. Range encoding example using SplitCoding.

Fig. 10. The pseudo code of SplitCoding.

c

t

n

t

e

e

r

r

L

e

f

w

t

fi

t

m

R

R

e

u

t

t

a

b

i

w

L

n

n

0

a

T

n

4

R

c

b

f

c

W

a

w

s

r

4

u

r

A

l

T

a

g

P

t

B

t

n

t

a

o

t

[

Step 1 If R is a generalized extremal range, skip to Step 2. Other-

wise, split R into two generalized extremal ranges.

Take the range R = [a, b] = [97, 171] as an example, we first

ompute the LCP for R that is LCP ab =

∗∗∗∗∗∗∗∗. Then, we generate

wo splitting endpoints for R : m = 01111111 and n = 10 0 0 0 0 0 0 . Fi-

ally, based on these two splitting endpoints , we can split R into

wo sub-ranges that are R am

and R nb as shown in Fig. 8 , where

ach of the split sub-ranges is a generalized extremal range .

Step 2 For each split generalized extremal range , choose between

internal and external encoding by counting 0/1-bit of

range endpoints (excluding the non-don’t-care common

bits in its corresponding LCP).

Take the left generalized extremal rangeR am

= [97, 127] as an

xample. We can first encode the external part of R am

under the

ange of LCP am

– that is R p(a- 1) as shown in Fig. 8 . Although the

ange R am

and R p(a- 1) are not extremal ranges as described in above

emmas, it is easy to see that these Lemmas still hold for gen-

ralized extremal ranges by ignoring the common super-prefix bits

rom its LCP . Due to relevance and space limitation, detailed proofs
ill not be given in this paper. Thus, for the two generalized ex-

remal ranges R am

and R p(a- 1) , the smallest number of encoded pre-

xes spanning these ranges can be obtained by simply counting

he 0/1-bit of their range endpoints, ignoring the first three com-

on bits from LCP am

: the lower five bits in integer value (a −1) for

 am

based on Lemma 2 and a for R p(a- 1) based on Lemma 1 . Since

 am

can be encoded into 5 and 2 prefixes by using internal and

xternal encoding scheme, the external encoding scheme will be

sed for R am

.

Step 3 Generate the final encoded prefixes in linear time by flip-

ping each 1-bit (Lemma 1) or 0-bit (Lemma 2) of the

range endpoints – excluding the common super-prefix –

and padding the following bits with ‘ ∗’.

After deciding on the encoding scheme for each generalized ex-

remal range , we can then obtain the smallest number of prefixes

hat span the range with the methods in Lemmas 1 or 2 where

pplicable. Most importantly, these encoded prefixes can simply

e generated in linear time. For example, by using external encod-

ng scheme for the left generalized extremal rangeR am

= [97, 127],

e can first encode the external part of R am

under the range of

CP am

which is R p(a-1) = [96, 96]. Based on Lemma 1 , the smallest

umber of encoded prefixes that span range R p(a- 1) is equal to the

umber of 1-bits in the lower five bits in integer value a that is

11 0 0 0 01 . Thus, the single encoded prefix for R p(a- 1) can be gener-

ted by replacing the last 1-bit in a with 0-bit, that is 011 0 0 0 0 0 .

herefore, we can obtain two encoded prefixes for R am

with exter-

al encoding scheme as illustrated in Figs. 8 and 9 .

.5. Theoretical analysis of encoding complexity

Based on above descriptions of SplitCoding, any W -width range

 can be encoded in a nearly constant time. From Fig. 9 and 10 , we

an see that in SplitCoding, all final encoded items of range R = [a,

] can be obtained based on two endpoints of R: a and b . Thus,

rom the memory access point of view, SplitCoding can finish the

oding for R in O(1) memory access, regardless of the range width

 . In contrast, optimal encoding adopts a dynamic-programming

lgorithm presented in [43] to generate encoded items recursively,

here it needs to modify two candidate subsets in each recursive

tep. Thus, it may consume up to O(W) memory accesses to encode

ange R , much more than that in SplitCoding.

.6. Worst-case range expansion for pre-classifier

We next give some refined theorems for SplitCoding about

pper-bound on range expansion. We then prove the worst-case

ange expansion for pre-classifier in SplitIP by using SplitCoding.

ssume that the range R = [a, b] (a < b), where its width and

ength are W and L , respectively.

heorem 1. The range expansion g(R) of the extremal range R (i.e.,

 = 0 or b = 2 W −1) satisfies the following upper-bound:

 (R) ≤
⌊

W + 2

2

⌋

=

⌈

W + 1

2

⌉

roof. For the binary representation of b , it is not difficult to prove

hat the number of 1-bit in b + 1 is at most one more than that in b .

ased on Lemmas 1 and 2 , we can see that the smallest number of

ernary entries that span [0, b] and [b + 1, 2 W −1] are equal to the

umber of 1-bits in b + 1 and the number of 0-bits in b, respec-

ively. Thus, the total number of encoded prefixes using internal

nd external encoding scheme is at most W + 2 (i.e., W + 1 bits and

ne external prefix). After choosing the better one, we can obtain

he above upper-bound. The proof is similar for the extremal range

 a, 2 W −1].

8 W. Li, D. Li and X. Liu et al. / Computer Networks 164 (2019) 106898

Table 4

Two core routing tables.

Table snapshot Location Date Table size

rcc01 (linx_1) London 1/1/2012 396376

oregon (linx_1) Oregon 17/12/2014 518231

t

d

s

d

w

b

i

r

i

a

o

5

t

o

u

a

u

a

e

C

5

t

V

u

t

p

b

a

p

T

p

r

c

a

p

w

o

i

T

p

d

r

r

p

p

p

c

a

p

m

m

Theorem 2. The range expansion g’(R) of the generalized extremal

range R satisfies the following upper-bound:

g ′ (R) ≤
⌈

L + 1

2

⌉

Proof. Obviously, the generalized extremal range R can be treated

as an extremal range under the range of LCP R , where the sub-width

of LCP R is equal to L , which is the length of R . Based on the proof

of Theorem 1 , we can easily prove the above upper-bound under

the range of LCP R .

Theorem 3. The range expansion f(R) of the general range R satisfies

the following upper-bound:

f ′ (R) ≤ L + 1

Proof. It is easy to prove that the L -length range R can be split into

two generalized extremal ranges , where their maximum sub-widths

are L and L −1 respectively. So:

f ′ (R) ≤
⌈

(L − 1) + 1

2

⌉

+

⌈

L + 1

2

⌉

= L + 1

Theorem 4. For K W-bit consecutive and nonoverlapping ranges

covering the whole range space, they can be encoded in at most

K(W −log 2 K + 1) TCAM entries.

Proof. Assume the length of range R i is L i (i = 1,2,…,K), we have:

2

W = 2

L 1 + 2

L 2 + . . . + 2

L K

Based on AM-GM inequality, we have:

2

W ≥ K · K
√

2

L 1 + L 2 + ···+ L K

L 1 + L 2 + · · · + L K ≤ K (W − lo g 2 K)

Thus, the total range expansion of K W -bit consecutive and

nonoverlapping ranges f ′
total

(W) is:

f ′ total (W) = f ′ 1 (W) + f ′ 2 (W) + . . . + f ′ K (W)

≤ (L 1 + 1) + (L 2 + 1) + . . . + (L K + 1)

≤ K (W − lo g 2 K + 1)

So, by using SplitCoding, K index ranges generated by SplitIP

can be encoded into at most K(W −log 2 K + 1) TCAM entries, with

W −log 2 K + 1 index entries for each TCAM block on average.

4.7. Route update

To support incremental updates, we need to make two changes

on above basic SplitIP: (1) to support incremental updates of in-

serting, the first change needed is to reserve a small fraction of

entries in each TCAM block during routing table partitioning; (2) to

ensure the correctness of lookup after deleting, the second change

needed is to reserve the prefixes completely covered by longer pre-

fixes, even though it may never be matched in this block due to

the LPM principle, such as P 4 and P 8 in Fig. 2 . Next, we give more

details about incremental updates.

The incremental update for prefix P can be completed in two

steps. The first step is to determine which one or more index

ranges are overlapped with P . The second step is to active the

TCAM blocks indexed by these overlapped index ranges for update

operations. Recall that the index ranges in pre-classifier are dis-

joint and consecutive. Thus, when updating a prefix P , we can per-

form the following steps. First we use two endpoint of P to locate

two TCAM blocks (b m

and b n , m ≤ n) at which they are supposed
o reside. Then we activate TCAM blocks from b m

to b n to con-

uct update operations as follows. When inserting a new prefix P i ,

ome blocks may overflow after insertion, which should be han-

led before the insert command is issued. To solve this problem,

e can move the leftmost or the rightmost prefixes to its neigh-

oring blocks recursively, until no block may overflow after the

nsertion. For each modified block, we can recode its new index

ange with SplitCoding, because it is not only fast but also database

ndependent. In contrast, the deletion of an old prefix requires only

 delete command issued for these activated blocks to remove it

ut if it exists.

. Experimental results

In this section, we present some experimental results of Spli-

IP using 32-bit BGP routing tables. We start with an overview of

ur experimental methodology. Since the primary metrics for eval-

ating the performance of power-efficient TCAM based solutions

re power reductions and memory consumptions, we then eval-

ate power reductions and memory consumptions of SplitIP sep-

rately. Finally, we evaluate the effectiveness of SplitCoding. All

xperiments are run on a machine with AMD Radeon 5-2400G

PU@3.6GHz and 8G DRAM.

.1. Experimental methodology

We evaluate the performance of SplitIP using two representa-

ive routing tables obtained from RIPE NCC [40] and Oregon Route

iews Project [51] respectively, which are recently used for eval-

ation by SAIL [47] and Poptrie [14] . Details of these two routing

ables are listed in Table 4 . Since the TCAM block size is an im-

ortant parameter for evaluations, we show results with different

lock sizes to demonstrate how the performance of our scheme is

ffected by block size.

As mentioned in above sections, the main component of TCAM

ower consumptions is proportional to the number of activated

CAM blocks. For the convenient of evaluation, we employ a sim-

le linear power model to estimate power reductions, though real

eductions may be slightly different. Suppose the routing table

ontains N prefixes and the TCAM block size is B , the number of

ctivated TCAM blocks for default TCAM schemes without using

re-classifier can be defined as X , where X = � N/B � . In order to for-

ard a destination address, the pre-classifier together with at most

ne specific TCAM block are needed to be activated. Thus, assum-

ng that M pre-classifier entries are formed, at most Y = � M/B � + 1

CAM blocks are activated for each routing lookup. Therefore, the

ercentage of power reduction with SplitIP is (X −Y)/ X . We use these

efinitions to evaluate power reductions of SplitIP.

Note that the primary objective of our work is to achieve power

eductions without sacrificing TCAM consumption. There are two

easons for extra TCAM overhead: additional memory for building

re-classifier and multiple entries for each duplicated prefix. Sup-

ose M pre-classifier entries are generated and an amount of Q

refixes are stored in TCAM (include original prefixes and dupli-

ated prefixes), we can then calculate the ratio of storage overhead

s (M + Q)/ N and the ratio of blocking replication as Q / N . Besides, the

re-classifier storage overhead can be obtained by the following for-

ula: (M + N)/ N . We use these notations and definitions to evaluate

emory consumptions of SplitIP.

W. Li, D. Li and X. Liu et al. / Computer Networks 164 (2019) 106898 9

Fig. 11. The power reductions of SplitIP.

5

s

s

a

r

9

t

a

i

C

b

fi

t

p

a

a

t

t

5

w

s

a

a

o

u

t

b

w

a

t

fi

a

d

Fig. 12. The storage overhead of SplitIP.

Fig. 13. More details about storage overhead of SplitIP.

t

t

I

a

s

S

w

1

d

p

.2. Power reduction

The reductions in power consumption by using SplitIP are

hown in Fig. 11 , where x-axis represents block size and y-axis

hows the percentage of power reduction. As shown in Fig. 11 (a)

nd (b), SplitIP achieves huge power reductions similar to MEET-IP,

anging from 93.93% to 99.21%, with an average power reduction of

7.41%, better than that of 92.56% and 96.28% in CoolCAMs using

wo different splitting methods. Additionally, SplitIP is more suit-

ble for incremental updates than CoolCAMs, because the merged

ntervals are consecutive in SplitIP, while those merged intervals in

oolCAMs are discrete. Fig. 11 also shows that, with the increase of

lock size, the power reductions show a trend from rise to decline,

nally reaching the same value for different schemes. The rising

rend in the first stage can be explained by previous definitions of

ower reduction, which is defined by (X −Y)/ X , where X = � N/B �
nd Y = � P/B � + 1. With the increase of block size, � P/B � will be

 fixed value (i.e., 1) for different schemes (block size larger than

he number of pre-classifier entries), leading same power reduc-

ions for different schemes.

.3. Storage overhead

The storage overheads by using SplitIP are shown in Fig. 12 ,

here x -axis represents block size and y -axis shows the ratio of

torage overhead. We can see from Fig. 12 (a) and (b) that SplitIP

chieves huge power reductions with negligible storage overhead

s MEET-IP, ranges from 1.001 to 1.081, with an average storage

verhead of 1.021, better than that of 1.31 and 1.028 in CoolCAMs

sing two different splitting methods. That is to say, only 2.1% ex-

ra TCAM overhead is needed for SplitIP. Another conclusion can

e drawn from Fig. 12 (a) and (b): storage overhead is declined

ith the increase of block size. To gain more insights about stor-

ge overhead in SplitIP, we next give more storage overhead de-

ails. This improvement, combined with the result in Fig. 11 , justi-

es our claim that a careful combination of algorithmic approaches

nd block-based TCAM designs can achieve significant power re-

uctions and avoid severe TCAM storage waste at the same time.
As mentioned in above sections, two reasons may lead to ex-

ra storage overhead: pre-classifier and duplicated prefixes. Thus,

o gain more insights about storage overhead of SplitIP and MEET-

P, we look into some details for these two reasons. The results

re shown in Fig. 13 , where x-axis represents block size and y-axis

hows the ratio of storage overhead. We can see from Fig. 13 that

plitIP and MEET-IP have the same ratio of duplicated prefixes, but

ith different ratio of pre-classifier storage overhead: 1.017 and

.003 on average. Thus, compared to MEET-IP, SplitIP can avoid ad-

itional endpoint comparisons by only introducing 1.4% additional

re-classifier entries.

10 W. Li, D. Li and X. Liu et al. / Computer Networks 164 (2019) 106898

Fig. 14. Range expansion distribution over all possible ranges for width W = 16.

Fig. 15. Average range expansion ratio over all possibile ranges for diffierent width.

Fig. 16. Average range encoding time of SplitCoding compared to optimal encoding

for all possibile ranges with diffierent width.

Fig. 17. Average range expansion ratio for different size of elementary intervals

with different range width W .

c

i

b

b

e

f

c

i

s

6

2

t

f

a

p

v

T

i

T

i

a

r

d

a

As an extended work of MEET-IP, another main contribution of

SplitIP is the proposed novel encoding scheme called SplitCoding,

as well as some new theorems and proofs. Thus, we next give more

evaluations to verify the effectiveness and prove the correctness of

SplitCoding.

5.4. Effectiveness of SplitCoding

We evaluate the performance of SplitCoding with internal [53] ,

external [32] and optimal [33] encoding scheme. Given the width

W , we generate all possible ranges with the same probability as

follows: [0, 0], [0, 1], [0, 2],…, [0, 2 W −1], [1, 1], [1, 2], [1, 3],…,

[2 W −2, 2 W −1], [2 W −1, 2 W −1]. All source codes are publicly avail-

able in [19] .

Fig. 14 shows the range expansion distribution over all possi-

ble ranges with width W = 16. The worst-case expansion of in-

ternal encoding approach is 2 W −2 = 30 (with negligible prob-

ability), while it is W = 16 in SplitCoding. Clearly, more ranges

are encoded with fewer prefixes in SplitCoding. Fig. 15 presents

the average range expansion ratio over all possible ranges for dif-

ferent width. SplitCoding achieves an average reduction of 20.85%

and 7.95% in encoded TCAM entries compared to internal and ex-

ternal approach. Although optimal encoding achieves an average

reduction of 8% in encoded TCAM entries compared to SplitCod-

ing, it consumes more than 10 times on average to generate en-

coded items as illustrated in Fig. 16 . Besides, regardless of the

range width W , Fig. 16 shows that SplitCoding can always finish

encoding in a nearly constant time. In contrast, the average encod-

ing time of optimal encoding grows linearly with the range width

W , which is consistent with our theoretical analysis of encoding
omplexity given in Section 4.4 . Thus, SplitCoding achieves similar

mprovement in performance of compression as optimal encoding,

ut much faster and simpler than optimal encoding.

Fig. 17 shows the evaluation between the theoretical upper

ound and the actual expansion ratio for randomly generated el-

mentary intervals. As the size of elementary intervals increases

rom 256 to 64k and W varies from 16 to 32, the expansion de-

reases almost linearly at a fixed slope, which indicates that there

s a good deal of room for the expansion reduction as well as

hows the correctness of the new theoretical upper bound.

. Conclusion

In this paper, we propose SplitIP, a memory and power efficient

-stage scheme for TCAM based IP routing table lookup. In order

o build a more effective pre-classifier, we introduce a top-down

ramework which has a better global view on relationships among

ddress prefixes. After the projecting of address prefixes, we pro-

ose a global splitting algorithm for projected elementary inter-

als, which can separate prefixes evenly into blocks without any

CAM holes. Besides, for the purpose of fast pre-classification, we

ntroduce a one-level pre-classifier based on database independent

CAM range encodings, where each index range can be firstly split

nto two sub-ranges and then adopt different encoding techniques

daptively to reduce the final encoded TCAM entries. Experimental

esults show that our design achieves more than 97% power re-

uction with an extra TCAM storage overhead of less than 3% on

verage.

W. Li, D. Li and X. Liu et al. / Computer Networks 164 (2019) 106898 11

D

c

i

A

s

f

t

w

Y

o

R

p

(

d

(

g

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
eclaration of Competing Interest

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper.

cknowledgment

We gratefully acknowledge the detailed comments and con-

tructive suggestions made by editors and anonymous reviewers

or our original submission. We appreciate the help from Ori Rot-

enstreich in terms of the design of SplitCoding. Besides, we also

ant to appreciate the friendly advices from Gaogang Xie and Tong

ang in this work. Hui Li and Dagang Li are corresponding authors

f this paper. This work is supported in part by the PCL Future

egional Network Facilities for Large-scale Experiments and Ap-

lications (PCL2018KP001), Shenzhen Peacock Innovation Program

KQJSCX20180323174744219), Key Areas R&D Program of Guang-

ong (2019B010137001), National Keystone R&D Program of China

2017YFB0803204), NSFC (61671001) and Shenzhen Research Pro-

rams (JCYJ20170306092030521).

eferences

[1] A. Bremler-Barr , D. Hendler , Space-efficient TCAM-based classification using
gray coding, in: Proceedings of the IEEE INFOCOM, 2007 .

[2] A.J. McAuley , P. Francis , Fast routing table lookup using CAMs, in: Proceedings
of the IEEE INFOCOM, 1993 .

[3] A.X. Liu , G. Gouda , Complete redundancy removal for packet classifiers in

TCAMs, IEEE Trans. Parallel Distrib. Syst. 20 (4) (2010) 424–437 .
[4] A.X. Liu , C.R. Meiners , E. Torng , Packet classification using binary content ad-

dressable memory, in: Proceedings of the IEEE INFOCOM, 2014 .
[5] A.X. Liu , C.R. Meiners , E. Torng , TCAM Razor: A systematic approach towards

minimizing packet classifiers in TCAMs, IEEE/ACM Trans. Netw. 18 (2) (2010)
490–500 .

[6] A.X. Liu , C.R. Meiners , Y. Zhou , All-match based complete redundancy removal

for packet classifiers in TCAMs, in: Proceedings of the IEEE INFOCOM, 2008 .
[7] B. Lampson , V. Srinivasan , G. Varghese , IP lookups using multiway and multi-

column search, IEEE/ACM Trans. Netw. 7 (3) (1999) 324–334 .
[8] B. Schieber , D. Geist , A. Zaks , Computing the minimum DNF representation

of Boolean functions defined by intervals, Discrete Applied Mathematics 149
(1-3) (2005) 154–173 .

[9] B. Vamanan , T. Vijaykumar , TreeCAM: decoupling updates and lookups in

packet classification, in: Proceedings of the ACM CoNEXT, 2011 .
[10] C.R. Meiners , A.X. Liu , E. Torng , Hardware Based Packet Classification for High

Speed Internet Routers, Springer Science & Business Media, 2010 .
[11] D. Sarang , K. Praveen , D. Taylor , Longest prefix matching using bloom filters,

in: Proceedings of the ACM SIGCOMM, 2003 .
[12] D. Shah , P. Gupta , Fast incremental updates on Ternary-CAMs for routing

lookups and packet classification, in: Proceedings of the IEEE Hot Intercon-

nects, 20 0 0 .
[13] F. Zane , G. Narlikar , A. Basu , CoolCAMs: power-efficient TCAMs for forwarding

engines, in: Proceedings of the IEEE INFOCOM, 2003 .
[14] H. Asai , Y. Ohara , Poptrie: a compressed trie with population count for fast

and scalable software IP routing table lookup, in: Proceedings of the ACM SIG-
COMM, 2015 .

[15] H. Che , Z. Wang , K. Zheng , B. Liu , DRES: dynamic range encoding scheme for

TCAM coprocessors, IEEE Trans. Comput. 57 (7) (2008) 902–915 .
[16] H.J. Chao , B. Liu , High Performance Switches and Routers, John Wiley & Sons,

2007 .
[17] H. Lim , K. Lim , N. Lee , K. Park , On adding bloom filters to longest prefix match-

ing algorithms, IEEE Trans. Comput. 63 (2) (2014) 411–423 .
[18] H. Liu , Efficient mapping of range classifier into ternary-CAM, in: Proceedings

of the IEEE Hot Interconnects, 2002 .

[19] http://www.wenjunli.com/SplitCoding .
20] K. Huang , G. Xie , Y. Li , A.X. Liu , Offset addressing approach to memory-effi-

cient IP address Lookup, in: Proceedings of the IEEE INFOCOM Mini-Confer-
ence, 2011 .

[21] K. Lakshminarayanan , A. Rangarajan , S. Venkatachary , Algorithms for advanced
packet classification with ternary CAMs, in: Proceedings of the ACM SIGCOMM,

2005 .
22] K. Zheng , C. Hu , H. Lu , B. Liu , A TCAM-based distributed parallel IP lookup

scheme and performance analysis, IEEE/ACM Trans. Netw. 14 (4) (2006)

863–875 .
23] K. Zheng , C. Hu , H. Lu , B. Liu , An ultra high throughput and power efficient

TCAM-based IP lookup engine, in: Proceedings of the IEEE INFOCOM, 2004 .
[24] L. Luo , G. Xie , S. Uhlig , L. Mathy , K. Salamatian , Y. Xie , Longest prefix matching

using bloom filters, in: Proceedings of the ACM CoNEXT, 2012 .
25] L. Luo , G. Xie , Y. Xie , L. Mathy , K. Salamatian , A Hybrid Hardware Architecture
for High-speed IP Lookups and Fast Route Updates, IEEE/ACM Trans. Netw. 22

(3) (2014) 957–969 .
26] L. Luo , G. Xie , Y. Xie , L. Mathy , K. Salamatian , A hybrid IP lookup architecture

with fast updates, in: Proceedings of the IEEE INFOCOM, 2012 .
[27] M. Bando , Y. Lin , H. Chao , FlashTrie: beyond 100-Gb/s IP route lookup us-

ing hash-based prefix-compressed trie, IEEE/ACM Trans. Netw. 20 (4) (2012)
1262–1275 .

28] M. Degermark , A. Brodnik , S. Carlsson , S. Pink , Small forwarding tables for fast

routing lookups, in: Proceedings of the ACM SIGCOMM, 1997 .
29] M. Waldvogel , G. Varghese , J. Turner , B. Plattner , Scalable high speed IP routing

lookups, in: Proceedings of the ACM SIGCOMM, 1997 .
30] Micron Technology Inc, Harmony TCAM 1Mb and 2Mb, Datasheet, 2003.

[31] O. Rottenstreich , I. Keslassy , On the code length of TCAM coding schemes, in:
Proceedings of the IEEE ISIT, 2010 .

32] O. Rottenstreich , I. Keslassy , Worst-case TCAM rule expansion, in: Proceedings

of the IEEE INFOCOM Mini-Conference, 2010 .
[33] O. Rottenstreich , I. Keslassy , A. Hassidim , H. Kaplan , E. Porat , On finding an

optimal TCAM encoding scheme for packet classification, in: Proceedings of
the IEEE INFOCOM, 2013 .

34] O. Rottenstreich , I. Keslassy , A. Hassidim , H. Kaplan , E. Porat , Optimal In/Out
TCAM encodings of ranges, IEEE/ACM Trans. Netw. 24 (1) (2016) 555–568 .

[35] O. Rottenstreich , R. Cohen , D. Raz , I. Keslassy , Exact worst-case TCAM rule ex-

pansion, IEEE Trans. Comput. 62 (6) (2013) 1127–1140 .
36] P. Gupta , S. Lin , N. McKeown , Routing lookups in hardware at memory access

speeds, in: Proceedings of the IEEE INFOCOM, 1998 .
[37] P. He , W. Zhang , H. Guan , K. Salamatian , G. Xie , Partial order theory for fast

TCAM updates, IEEE/ACM Trans. Netw. 26 (1) (2018) 217–230 .
38] P. Rina , S. Samar , Reducing TCAM power consumption and increasing through-

put, in: Proceedings of the IEEE Hot Interconnects, 2002 .

39] R. Miguel , B. Ernst , D. Walid , Survey and taxonomy of IP address lookup algo-
rithms, IEEE Netw. 15 (2) (2001) 8–23 .

40] RIPE network coordination centre [on line]. Available: http://www.ripe.net .
[41] S. Han , K. Jang , K. Park , S. Moon , PacketShader: a GPU-accelerated software

router, in: Proceedings of the ACM SIGCOMM, 2010 .
42] S. Nilsson , G. Karlsson , IP-address lookup using LC-tries, IEEE J. Sel. Areas Com-

mun. 17 (6) (1999) 1083–1092 .

43] S. Suri , T. Sandholm , P. Warkhede , Compressing two-dimensional routing ta-
bles, Algorithmica 35 (4) (2003) 287–300 .

44] T. Yang , A.X. Liu , Y. Shen , Q. Fu , D. Li , X. Li , Fast openflow table Lookup with
fast update, in: Proceedings of the IEEE INFOCOM, 2018 .

45] T. Yang , B. Yuan , S. Zhang , T. Zhang , R. Duan , Y. Wang , B. Liu , Approaching
optimal compression with fast update for large scale routing tables, in: Pro-

ceedings of the IEEE/ACM IWQoS, 2012 .

46] T. Yang , G. Xie , A.X. Liu , Q. Fu , Y. Li , X. Li , L. Mathy , Constant IP lookup with
FIB explosion, IEEE/ACM Trans. Netw. 26 (4) (2018) 1821–1836 .

[47] T. Yang , G. Xie , Y. Li , Q. Fu , A.X. Liu , Q. Li , L. Mathy , Guarantee IP lookup
performance with FIB explosion, in: Proceedings of the ACM SIGCOMM,

2014 .
48] T. Yang , R. Duan , J. Lu , S. Zhang , H. Dai , B. Liu , CLUE: achieving fast update

over compressed table for parallel lookup with reduced dynamic redundancy,
in: Proceedings of the IEEE ICDCS, 2012 .

49] T. Yang , T. Zhang , S. Zhang , B. Liu , Constructing optimal non-overlap routing

tables, in: Proceedings of the IEEE ICC, 2012 .
50] T. Yang , Z. Mi , R. Duan , X. Guo , J. Lu , S. Zhang , X. Sun , B. Liu , An ultra-fast

universal incremental update algorithm for Trie-based routing lookup, in: Pro-
ceedings of the IEEE ICNP, 2012 .

[51] University of Oregon route views project [on line]. Available: http://www.
routeviews.org .

52] V. Srinivasan , G. Varghese , Faster IP lookups using controlled prefix expansion,

ACM SIGMETRICS Perform. Eval. Rev. 26 (1) (1998) 1–10 .
53] V. Srinivasan , G. Varghese , S. Suri , M. Waldvogel , Fast and Scalable Layer Four

Switching, in: Proceedings of the ACM SIGCOMM, 1998 .
54] W. Eatherton , G. Varghese , Z. Dittia , Tree bitmap: Hardware/software IP

lookups with incremental updates, ACM SIGCOMM Comput. Commun. Rev. 34
(2) (2004) 97–122 .

55] W. Li , X. Li , HybridCuts: a scheme combining decomposition and cutting for

packet classification, in: Proceedings of the IEEE Hot Interconnects, 2013 .
56] W. Li , X. Li , H. Li , MEET-IP: memory and energy efficient TCAM-based IP

lookup, in: Proceedings of the International Conference on Computer Commu-
nications and Networks (ICCCN), 2017 .

[57] W. Li , X. Li , H. Li , G. Xie , CutSplit: a decision-tree combining cutting and split-
ting for scalable packet classification, in: Proceedings of the IEEE INFOCOM,

2018 .

58] W. Li , X. Liu , W. Le , H. Li , H. Zhang , A practical range encoding scheme for
TCAMs, in: Proceedings of the ACM SIGCOMM Posters and Demos, 2019 .

59] X. Li , Y. Lin , W. Li , GreenTCAM: a memory- and energy-efficient TCAM-based
packet classification, in: Proceedings of the International Conference on Com-

puting, Networking and Communications (ICNC), 2016 .
60] Y.K. Chang , A 2-level TCAM architecture for ranges, IEEE Trans. Comput. 55 (12)

(2006) 1614–1629 .

[61] Y.K. Chang , Power-efficient TCAM partitioning for IP lookups with incremental
updates, in: Proceedings of the International Conference on Information Net-

working (ICOIN), 2005 .
62] Y.K. Chang , C.I. Lee , C.C. Su , Multi-field range encoding for packet classification

in TCAM, in: Proceedings of the IEEE INFOCOM, 2011 .

http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0001
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0001
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0001
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0003
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0003
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0003
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0004
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0004
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0004
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0005
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0005
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0005
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0005
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0006
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0006
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0006
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0006
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0007
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0007
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0007
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0007
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0008
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0008
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0008
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0008
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0009
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0009
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0009
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0009
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0010
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0010
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0010
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0011
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0011
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0011
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0011
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0012
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0012
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0012
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0012
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0013
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0013
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0013
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0014
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0014
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0014
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0014
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0015
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0015
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0015
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0016
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0016
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0016
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0016
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0016
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0017
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0017
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0017
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0018
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0018
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0018
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0018
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0018
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0019
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0019
http://www.wenjunli.com/SplitCoding
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0021
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0021
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0021
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0021
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0021
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0022
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0022
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0022
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0022
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0023
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0023
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0023
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0023
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0023
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0024
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0024
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0024
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0024
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0024
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0025
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0025
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0025
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0025
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0025
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0025
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0025
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0026
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0026
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0026
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0026
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0026
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0026
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0027
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0027
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0027
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0027
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0027
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0027
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0028
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0028
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0028
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0028
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0029
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0029
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0029
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0029
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0029
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0030
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0030
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0030
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0030
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0030
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0031
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0031
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0031
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0032
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0032
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0032
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0033
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0033
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0033
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0033
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0033
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0033
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0034
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0034
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0034
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0034
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0034
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0034
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0035
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0035
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0035
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0035
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0035
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0036
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0036
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0036
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0036
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0037
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0037
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0037
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0037
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0037
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0037
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0038
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0038
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0038
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0039
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0039
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0039
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0039
http://www.ripe.net
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0040
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0040
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0040
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0040
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0040
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0041
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0041
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0041
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0043
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0043
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0043
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0043
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0044
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0044
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0044
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0044
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0044
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0044
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0044
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0045
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0045
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0045
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0045
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0045
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0045
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0045
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0045
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0046
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0046
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0046
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0046
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0046
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0046
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0046
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0046
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0047
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0047
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0047
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0047
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0047
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0047
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0047
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0047
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0048
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0048
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0048
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0048
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0048
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0048
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0048
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0049
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0049
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0049
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0049
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0049
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0050
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0050
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0050
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0050
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0050
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0050
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0050
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0050
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0050
http://www.routeviews.org
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0051
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0051
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0051
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0052
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0052
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0052
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0052
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0052
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0053
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0053
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0053
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0053
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0054
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0054
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0054
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0055
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0055
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0055
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0055
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0056
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0056
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0056
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0056
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0056
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0057
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0057
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0057
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0057
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0057
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0057
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0058
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0058
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0058
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0058
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0059
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0059
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0060
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0060
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0061
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0061
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0061
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0061

12 W. Li, D. Li and X. Liu et al. / Computer Networks 164 (2019) 106898

[63] Y.K. Chang , C.C. Su , Y.C. Lin , S.Y. Hsieh , Efficient gray-code-based range encod-
ing schemes for packet classification in TCAM, IEEE/ACM Trans. Netw. 21 (4)

(2013) 1201–1214 .
[64] Y. Li , D. Zhang , A.X. Liu , J. Zheng , GAMT: a fast and scalable IP lookup engine

for GPU-based software routers, in: Proceedings of the ACM/IEEE ANCS, 2013 .
[65] Y. Ma , S. Banerjee , A smart pre-classifier to reduce power consumption of

TCAMs for multi-dimensional packet classification, in: Proceedings of the ACM
SIGCOMM, 2012 .

[66] Z. Marko , R. Luigi , M. Miljenko , DXR: towards a billion routing lookups per sec-

ond in software, ACM SIGCOMM Comput. Commun. Rev. 42 (5) (2012) 29–36 .

Wenjun Li, Wenjun Li received his B.Sc. from University
of Electronic Science and Technology of China, in 2011,

and M.Sc. from Peking University, in 2014. From 2014
to 2015, he worked as a researcher in network research

department, Huawei Technologies Co. Ltd. Now, he is a

Ph.D. candidate in School of Electronics Engineering and
Computer Science, Peking University. His research inter-

est includes computer network architecture and high-
performance network device.

Dagang Li received his Bachelor from Huazhong Univer-

sity of Science and Technology, Wuhan, China in 1998 and
Ph.D. from Katholieke Universiteit Leuven (University of

Leuven), Leuven, Belgium in 2010. He is currently an As-

sistant Professor with Peking University Shenzhen Gradu-
ate School. His research areas are data center networking

and storage infrastructure, and big data processing sys-
tems.

Xinwei Liu received her B.Sc. from Huazhong Univer-

sity of Science and Technology in 2017. Now she is a
graduate student in School of Electronics and Computer

Engineering, Peking University. Her research interest in-
cludes computer network architecture and Software De-

fined Networking.
Ting Huang received her B.Sc. from Sun Yat-sen Univer-
sity of Data and Computer Science in 2017. Now she is a

graduate student in School of Electronics and Computer
Engineering, Peking University. Her research interest in-

cludes computer network architecture and Software De-

fined Networking.

Xianfeng Li received his B.Sc. from School of Computer

and Control Engineering, Beijing Institute of Technology,
in 1995, and Ph.D. degree in computer science from the

National University of Singapore, in 2005. Now, he is as-

sociate professor in School of Electronic and Computer
Engineering, Peking University. His research interest in-

cludes Software Defined Networking, network security
and Internet of Things.

Wenxia Le is an enterprise network engineer and a sales
manager in Network Energy Department, Huawei Tech-

nologies Co., Ltd. Her research interest includes energy ef-

ficient data center networking, low power devices in data
communication network and Network Function Virtual-

ization.

Hui Li received the B.Eng. and M.S. degrees from Ts-
inghua University, Beijing, China, in 1986 and 1989 re-

spectively, and Ph.D. degree from The Chinese University
of Hong Kong in 20 0 0. He is now with the Shenzhen

Key Lab of Information Theory & Future Network Archi-
tecture, Future Network PKU Lab of National Major Re-

search Infrastructure, Shenzhen Engineering Lab of Con-

verged Networking Technology, Huawei & PKU Jointly En-
gineering Lab of Future Network Based on SDN and the

PKU Institute of Big Data Technology, Shenzhen Graduate
School, Peking University. His research interests include

distributed storage systems, network coding, large-scale
switching and routing.

http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0062
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0062
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0062
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0062
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0062
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0063
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0063
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0063
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0063
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0063
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0064
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0064
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0064
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0065
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0065
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0065
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0065

	A power-saving pre-classifier for TCAM-based IP lookup
	1 Introduction
	2 Related work and challenges
	2.1 2-stage Power-efficient TCAMs
	2.2 Challenges and motivation

	3 SplitIP: a 2-stage top-down framework
	3.1 LPM Problem point location problem
	3.2 Top-down splitting algorithm
	3.3 One-level pre-classifier based on encodings

	4 SplitCoding for fast pre-classification
	4.1 Notations
	4.2 Related encodings
	4.3 Related lemmas
	4.4 Key encoding steps
	4.5 Theoretical analysis of encoding complexity
	4.6 Worst-case range expansion for pre-classifier
	4.7 Route update

	5 Experimental results
	5.1 Experimental methodology
	5.2 Power reduction
	5.3 Storage overhead
	5.4 Effectiveness of SplitCoding

	6 Conclusion
	Declaration of Competing Interest
	Acknowledgment
	References

