Computer Networks 164 (2019) 106898

journal homepage: www.elsevier.com/locate/comnet

Contents lists available at ScienceDirect

Mputer
~Netw
Computer Networks (™

A power-saving pre-classifier for TCAM-based IP lookup * n

Wenjun Li*"* Dagang Li®<, Xinwei Liu?, Ting Huang?, Xianfeng Li°, Wenxia Le¢, Hui Li*"

Check for
updates

aSchool of Electronic and Computer Engineering, Peking University, Shenzhen, China

b peng Cheng Laboratory, Shenzhen, China

€ PKU-HKUST ShenZhen-HongKong Institution, Shenzhen, China
d Network Energy Department, Huawei Technologies Co., Ltd, Shenzhen, China

ARTICLE INFO

ABSTRACT

Article history:

Received 5 November 2018
Revised 2 August 2019

Accepted 7 September 2019
Available online 9 September 2019

Keywords:

IP routing table lookup
TCAM

Range encoding

Power reduction
Memory efficient

Ternary Content Addressable Memory (TCAM) is widely used for designing high-throughput forwarding
engines on most of today’s high-end routers. Despite its capability for line-speed queries, it is very power
hungry and space inefficient. By making use of a pre-classifier to activate TCAM blocks selectively, MEET-
IP, a recently proposed TCAM based IP lookup scheme, significantly improves the utilization of TCAMs.
However, it suffers from performance degradation because it uses a two-level pre-classifier. In this pa-
per, we propose SplitIP, a memory and power efficient TCAM-based scheme for IP routing table lookup.
We first transform the IP lookup problem to a point location problem through a routing table projection.
Based on the projection, we propose a top-down splitting algorithm to separate routing table prefixes
evenly into TCAM blocks. Finally, a simpler one-level classifier is constructed for fast pre-classification
using improved range encoding techniques. The top-down prefix partitioning algorithm combined with
the database independent encoding scheme provides an incremental update for SplitIP. Experimental re-
sults show that our design achieves more than 97% power reduction with a TCAM storage overhead of

less than 3% on average.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

IP routing table lookup is one of the critical issues in design-
ing high-performance routers. It is a challenging problem due to
the following aspects: (1) the size of the routing table has become
more than half a million and keeps growing [40]; (2) cloud com-
puting and network applications are pushing the line rate of core
routers to 400Gbps or even higher; (3) one IP address may match
multiple prefixes when performing the Longest Prefix Matching
(LPM); (4) the deployment of IPv6 will lead to larger routing ta-
bles with longer prefixes. With the exponential growth of the In-
ternet, these challenges become even stronger than ever, therefore,
efficient and scalable solutions for IP lookup are still under active
investigation.

* The preliminary version of this paper titled “MEET-IP: Memory and Energy Effi-
cient TCAM-based IP Lookup” was published in the proceedings of the 26th Interna-
tional Conference on Computer Communications and Networks (ICCCN), Vancouver,
Canada, July, 2017 [56].

* Corresponding author at: School of Electronic and Computer Engineering,
Peking University, Shenzhen, China.

E-mail addresses: wenjunli@pku.edu.cn (W. Li), dgli@pku.edu.cn (D.
Li), Ixw0724@pku.edu.cn (X. Liu), huangting53@pku.edu.cn (T. Huang),
lixianfeng.sz@pku.edu.cn (X. Li), lewenxia@huawei.com (W. Le), lih64@pku.edu.cn
(H. Li).

https://doi.org/10.1016/j.comnet.2019.106898
1389-1286/© 2019 Elsevier B.V. All rights reserved.

Numerous IP routing table lookup techniques have been pro-
posed in the past twenty years [16,39]. They can be categorized
broadly into two major approaches: software-based algorithmic
solutions and hardware-based architectural solutions. Algorithmic
solutions using ordinary memories and commercial processors
have been well studied because they are cheap and flexible.
However, despite extensive research efforts, most of them are
memory and performance inefficient, falling short of the needs of
high-speed networks. Thus, architectural solutions using special
hardware, such as TCAM and FPGA, have become the de-facto
route in the industry for designing high-throughput forwarding
engines on high-end routers. Among the hardware used in major
architectural solutions, Ternary Content Addressable Memory
(TCAM) is regarded as a promising device and has been widely
deployed in existing network devices.

TCAM is a fully associative memory that allows a “don’t care”
state to be stored in each memory cell in addition to Os and 1s.
This feature makes it particularly attractive for packet classifica-
tion and routing table lookup that require longest prefix matches
[2]. When a destination address is presented to the TCAM, each
TCAM entry is searched in parallel and the longest matching ad-
dress prefix is returned. Thus, a single TCAM access is sufficient
to perform a routing table lookup. Moreover, TCAM-based table
is much simpler to manage and update than those implemented

https://doi.org/10.1016/j.comnet.2019.106898
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2019.106898&domain=pdf
mailto:wenjunli@pku.edu.cn
mailto:dgli@pku.edu.cn
mailto:lxw0724@pku.edu.cn
mailto:huangting53@pku.edu.cn
mailto:lixianfeng.sz@pku.edu.cn
mailto:lewenxia@huawei.com
mailto:lih64@pku.edu.cn
https://doi.org/10.1016/j.comnet.2019.106898

2 W. Li, D. Li and X. Liu et al./ Computer Networks 164 (2019) 106898

using SRAM/DRAM [23,37,48]. Despite its high speed and ease of
management, TCAM has its own limitations with respect to IP
routing table lookup. First, TCAM has limited capacity and is not
expected to increase dramatically in the near future. Second, TCAM
chips consume large amount of power. For example, a typical 1Mb
TCAM chip can consume up to 15-30 Watts of power, which is
roughly 150 times more power per bit than SRAM [30]. Third,
TCAM is very expensive and normally contributes a significant frac-
tion to the total cost of network devices [10].

In recent years, leading TCAM vendors have provided block-
based TCAM designs, where the TCAM device is partitioned into
fix-sized blocks, and a subset of them can be activated for lookups
when needed. This improved design provides a good substrate for
potential power reduction. Many research efforts exploit this fea-
ture to optimize the power consumption of TCAM-based forward-
ing engines. Authors of CoolCAMs [13]| proposed an architecture
to partition the entire routing table into multiple sub-tables or
buckets, where each bucket is laid out over one or more TCAM
blocks. SmartPC [65], one of well-known works targeting blocked
TCAM, introduced a pre-classifier with the idea of expanding and
combining original classifier rules based on their [P address loca-
tions. However, these efforts achieve power saving at the expense
of poor utilization of TCAM capacity (i.e., idle memory holes in the
TCAM blocks), and the potential of power reduction is not fully ex-
ploited in many cases. In order to support incremental updates,
the author of paper [61] proposed a new partitioning algorithm
based on the prefix comparison, which can split the routing table
into a fixed number of buckets as evenly as possible, but it may
suffer from performance degradation because of its binary search
based pre-classifier. Recently, GreenTCAM [59] achieves more en-
ergy reduction and solves the problem of poor TCAM utilization in
SmartPC, yet it cannot be well applied to IP lookup. MEET-IP, the
preliminary version of this paper, significantly improves the uti-
lization of TCAMs using a top-down pre-classifier, but its two-level
pre-classifier is rather complicated performance-wise. Therefore,
although the 2-stage framework with pre-classifier is a promis-
ing solution for power-efficient TCAMs, as far as we know, exist-
ing approaches still lack of a smart pre-classifier which can make
excellent balance among power consumption, memory utilization,
search performance and update performance.

In this paper, we propose SplitIP, a 2-stage TCAM-based scheme
for IP routing table lookup. In the first stage, each incoming IP
address is classified by a one-level pre-classifier (or index table),
which provides information on which TCAM block to be activated
in the next stage; in the second stage, the TCAM block from the
first stage is activated and searched for a match. We identified
three main challenges when designing the pre-classifier of our
schemes: (1) minimum TCAM holes when accommodating large
number of table entries; (2) effective mapping of pre-classifier en-
tries onto TCAM blocks; (3) quick index search mechanism during
the pre-classification. To solve these problems, we first transform
the LPM problem to a point location problem through routing pre-
fixes projection. After then, we propose a global top-down parti-
tion algorithm to effectively separate the projected prefixes evenly
into TCAM blocks. Finally, a range encoding based pre-classifier is
used to quickly select the right TCAM blocks to activate. The simple
top-down prefix projection makes SplitIP much easier to achieve
efficient partitioning and to support fast incremental updates. Ex-
perimental results show that our design achieves more than 97%
power reduction with a TCAM storage overhead of less than 3% on
average.

The rest of the paper is organized as follows. Section 2 briefly
summarizes the related work and challenges. Sections 3 and
4 present the technical details of our work. Section 5 provides our
experimental results. Finally, Section 6 draws conclusions on this
work.

2. Related work and challenges

A lot of software-based algorithmic approaches have been pro-
posed for IP lookup in the past twenty years. In general, they
can be categorized into trie-based algorithms [14,20,28,42,45-
47,49,50,52,54], hash-based algorithms [11,17,24,44] and range-
based algorithms [7,29,66]. However, most approaches still fall
short of providing satisfactory lookup performance. Thus, ar-
chitectural solutions using special hardware have been wildly
studied in recent years. Based on their implementation plat-
forms, we can categorize prior works into TCAM-based algorithms
[12,22,23,25,26,38], FPGA based algorithms [17,27] and GPU-based
algorithms [41,64]. Among them, TCAM has been widely used for
IP routing table lookup and packet classification because of its abil-
ity to allow a “don’t care” state and process packet at line-speed.
Moreover, TCAM-based solutions are much easier to manage than
other hardware-based solutions.

Despite these advantages, this brutal force hardware solution
is not only expensive and space inefficient, but also very power-
hungry. Besides, TCAM also suffers from severe expansion prob-
lem when storing ranges. During the past decade, a lot meth-
ods and algorithms had been proposed to alleviate these prob-
lems, such as classifier minimization [3-6] and range encoding
[1,15,18,21,31,35,58,62,63]. To reduce the power consumption of
TCAMs, the latest TCAM devices from leading vendors come with
a power saving mechanism where a subset of its TCAM blocks can
be selectively activated. A TCAM block is a contiguous, fixed-size
chunk of TCAM entries, much smaller than the size of the en-
tire TCAM. Recent research efforts exploit this feature to construct
a 2-stage power-efficient TCAMs and introduce a pre-classifier to
activate TCAM blocks selectively [9,13,56,59,65]. In this paper, we
propose a more efficient pre-classifier called SplitIP by combining
block-based TCAM designs with range-based lookup algorithms in
a novel way, so that TCAM solutions can achieve huge power re-
duction without heavy TCAM storage waste. Next, we give a more
detailed review on several representative 2-stage power-efficient
TCAMs.

2.1. 2-stage Power-efficient TCAMs

CoolCAMs [13] is one of the most representative 2-stage power-
efficient TCAM-based routing table lookup algorithms. The key idea
for the CoolCAMs architecture is to partition the entire routing ta-
ble into multiple sub-tables or buckets, where each bucket is laid
out over one or more TCAM blocks. Two different table-splitting
schemes have been proposed, which are bit selection architecture
and tire-based table partitioning. Bit selection architecture pro-
vides a straightforward technique for power reduction with sim-
ple extra hardware requirement. Based on observation that most
prefixes in core routing tables are between 16 and 24 bits long,
the bit selection architecture puts the special prefixes into a set of
TCAM blocks to search on every lookup, and the remaining prefixes
are partitioned into buckets which is selected by hashing for each
lookup. However, this technique has some drawbacks such as terri-
ble worst-case bounds and unsustainable assumptions about prefix
distribution. To improve on these drawbacks, tire-based table parti-
tioning algorithm has been proposed, using a prefix trie to get the
ID of the right TCAM bucket. Two different partitioning schemes
have been proposed: subtree-split and post-order split. During the
partitioning step of the subtree-split algorithm, the prefix trie is
traversed in post order looking for a covering node, whose count
is at least half of the TCAM bucket size. The drawback of subtree-
split algorithm is that the smallest and largest bucket sizes vary
by as much as a factor of 2, leading to poor memory utilization
with a lot of holes in the TCAM blocks. Assuming a TCAM block
size of 4, Fig. 1 shows a partition example of subtree-split based

W. Li, D. Li and X. Liu et al./Computer Networks 164 (2019) 106898 3

Prefix length = 0

Prefix length = 1

Prefix length = 2

Prefix length = 3

P, ‘\‘1"* Prefix length = 4
= mp, W orefic longth e s
- SN \ th =
Py - . refix leng
Ps Po g m
Pg P Pz
(a) step 1
Cavering index prefix: 01000*))
joy o 2
P ral . Pl(N\
P mp, p /i, f f:,
. wm (oA om P
Ps Ps Ps Ps Ps Ps
(b) step 2 (c) step 3 (d) step 4

Covering index prefix: 0100* Covering index prefix: 010% Covering index prefix: 01*

Fig. 1. A partition example of CoolCAMs (subtree-split algorithm).

CoolCAMs. It first selects the leftmost bottom prefix P; as the ini-
tial covering index prefix, and then tries to cover more prefixes by
doubling the covering range (i.e., index 1) each time. When index 1
tries to cover prefix node a in step 4, three prefixes (i.e., P4, Ps, Pg)
should be included simultaneously, which will cause an overflow
of a TCAM block. Thus, only two prefixes in step 3 (i.e., P, P3)
can be stored in the TCAM block, leaving the remaining two en-
tries in idle. Post-order split algorithm eliminates the TCAM holes
through even routing table partitioning, where each partitioned
bucket is constructed from a collection of subtrees, rather than a
single subtree as in the case of subtree-split algorithm. However,
such an even partition comes at the extra cost of a larger num-
ber of entries in the index TCAM which are used to store indexes
in the first stage pre-classifier (at most W+1 index entries for one
TCAM block, where W is the maximum prefix length in the rout-
ing table). With the continuous growth of routing table size and
gradual deployment of IPv6, the problem of index TCAM storage
overhead will become more severe. MEET-IP, a recently proposed
2-stage power-efficient TCAMs for IP lookup, significantly improves
the utilization of TCAMs by constructing a top-down pre-classifier
for routing tables. In MEET-IP, each incoming address is presented
to the index TCAM for retrieving the best matching prefix, fol-
lowed by some extra comparisons in RAM. Thus, its two-level pre-
classifier may not be favorable performance-wise.

SmartPC [65], another well-known 2-stage power-efficient
TCAM scheme, introduces a pre-classifier for packet classification,
where each incoming packet is forwarded according to a set of
multi-field rules. The basic idea for the pre-classifier construction
is to divide the whole source-destination dimensional space into
some non-intersecting sub-spaces, each covering a subset of rules
inside it. In SmartPC, each pre-classifier entry is constructed by
expanding and combining original classifier rules based on their
source-destination address locations. More exactly, it starts with a
randomly selected free rule (not yet included in any pre-classifier
entry), and the initial sub-space covered by this entry corresponds
to the rectangle formed by the source and destination fields of
the selected rule. Then, the sub-space continues its space expan-
sion until the subset of rules completely covered by the current
sub-space reaches the limit of the TCAM block size, and rules
partly intersected with the current sub-space will be regarded
as general rules to search for every lookup. When the sub-space

expansion process completes, a pre-classifier entry can be gener-
ated for the sub-space, and a corresponding TCAM block is al-
located for the contained subset of rules. Clearly, this random
bottom-up way of generating pre-classifier lacks the global view
on the relationship of rules, leading to a large number of general
rules and TCAM holes. Recently, GreenTCAM [59] is proposed to
solve the problem of poor utilization of TCAM capacity suffered
in SmartPC. Based on the observation that most classifier rules
contain at least one ‘small’ IP address field [55,57], it separates
the original classifier table into several sub-tables and builds pre-
classifier for each sub-table. GreenTCAM achieves a 93.6% energy
reduction with a TCAM storage overhead of 5.6% on average, much
better than that of SmartPC. However, its two-level pre-classifier
may also lead to performance degradation. Besides, it cannot be
well applied to IP lookup.

2.2. Challenges and motivation

According to the discussions above, the 2-stage framework is
a promising approach for power-efficient TCAMs, where the first
stage is a pre-classification and the second is a selective post-
classification. With the help of pre-classification, only a few TCAM
blocks containing the candidates will be activated in the second
stage, rather than comparing against all TCAM entries blindly. Un-
der this framework, the critical challenge is how to build an effec-
tive pre-classifier, such that the original table can be well accom-
modated into TCAM blocks as compact and efficient as possible.
At the same time, since the pre-classifier itself also needs to be
stored and searched, the pre-classifier itself should be small and
well suited for fast pre-classification.

Currently, most existing pre-classifiers are built in a locally
greedy heuristic way, and their bottom-up approach restricts their
ability for global optimization. In this paper, we propose a top-
down framework, which can process the prefixes from a global
view to achieve a more effective pre-classifier. The whole frame-
work includes global address projection, block splitting and range
encoding. More details will be given in the following two sections.

3. SplitIP: a 2-stage top-down framework

In this section, we present SplitlP, a memory and power effi-
cient scheme for TCAM based IP routing table lookup, which can
also be applied to IPv6. We first transform the LPM problem into a
point location problem through routing table projection, generating
a set of elementary intervals from the address prefixes. Based on
these elementary intervals, we propose a top-down splitting algo-
rithm that can evenly separate routing prefixes into TCAM blocks
with minimum memory holes and indexing TCAM entries, much
less than in CoolCAMs and SmartPC. Finally, a simpler one-level
pre-classifier based on range encoding techniques is constructed
for the TCAM blocks, where each index range can be split into two
sub-ranges, and adopts different encoding techniques adaptively to
reduce edcoded TCAM entries. For the convenience of description
and comparison, the example of a 7-bit routing table containing
12 address prefixes from Table 1 is used, which was also used in
CoolCAMs.

3.1. LPM Problem — point location problem

A network address prefix is commonly indicated as a pair of ad-
dress/prefix length, where only the most significant bits indicated by
the prefix length are used for matching, and the rest least wildcard
bits (*) are simply ignored. In essence, each address prefix corre-
sponds to a range of values, where the lower bound and upper
bound can be obtained by setting the wildcards to Os and 1s re-
spectively, as shown in the column of prefix ranges in Table 1.

4 W. Li, D. Li and X. Liu et al./ Computer Networks 164 (2019) 106898

Table 1
A sample routing table.
Routing table Prefix database (7 bits in length) Next Hop
Prefix bit strings Prefix ranges

Py [[0, 63] hop1

Py 0100*** [32,39] hop2

Py 01000** [32, 35] hop3

Py 0110*** [48, 55] hop4

Ps 01100** [48, 51] hop5

Ps 01101** [52, 55] hop6
P, 10%xx* [64, 95] hop7
Pg 1101+ [104, 111] hop8
Py 110100* [104, 105] hop9
P1o 110101* [106, 107] hop10
Py 11011+ [108, 111] hop11
Pi3 110111* [110, 111] hop12

Ps
Py
P, Pg
Py P
Po
Ps iP5 Paz
Ps! Py
0 127
a b cde f g h i j klmn p

Fig. 2. Routing table projection from a geometric point of view.

The range of an address prefix may be contained by the range
of another address prefix, if and only if the latter is a prefix of
the former. For example, by projecting the address prefixes in
Table 1 onto a number line, we find that P, P, P4, Ps and Pg are
all contained by Py, as the prefix 0* of P; is a prefix of Py, P3, Py,
Ps and Pg. Because of this property of the routing table, an IP ad-
dress may match multiple prefixes. In this case, the longest prefix,
which is most specific range containing the IP address, will be the
best match. Algorithms finding the best match are thus called the
Longest Prefix Matching (LPM) algorithms.

With the projection of address prefixes in Fig. 2, a set of end-
points (i.e., a, b, c..., m, n, p) can be identified to split the whole
number line into a set of contiguous and disjoint intervals. These
intervals are called elementary intervals which can be defined for-
mally as follows:

Definition 1. (Elementary intervals): For W-bit address space of
0 to 2W—1, it can be divided into a set of k elementary intervals
E={X;|X; = I, r;], for i = 1 to k}, E satisfy the following:

(]) l] = 0 and Ty = ZW—l,
(2) Iy = li+1 —1fori=1tok — 1

By introducing elementary intervals, the routing table lookup
can be viewed as a problem of point location among a set of con-
tiguous and non-overlapping elementary intervals. Therefore, given
an incoming IP address, the first step is to decide the elementary
interval where the IP address is located. Unlike the original LPM
problem, there will only be one unique matching for this IP ad-
dress in terms of elementary interval. The second step is to decide
the best address prefix from all prefixes that cover the elementary
interval obtained from the first step. For example, with an IP ad-
dress of 0100001, the elementary interval [b, c] in Fig. 2 is selected,
then among the three prefixes P;, P, and P; covering [b, c], the
best matching prefix is P3 as it is the most specific prefix for [b,
c], and in turn the most specific prefix for IP address 0100001. The
correctness of this two-step algorithm comes from an important
fact: all address values (points) in one elementary interval share
the same set of address prefixes covering the whole interval. That

P10
Po_Pfiz

j klmn p

P1 PsPsfuPs Ps Pi, P .
a b cde f g h i

Fig. 3. LPM problem — point location problem.

Table 2
Elementary intervals and corresponding prefixes.

Elementary Corresponding matching prefixes

intervals -
Covered prefixes Best matching prefix

[0, 31] Py Py

[32, 35] Py, Py, P3 Ps

[36, 39] Py, Py P,

[40, 47] Py Py

[48, 51] Py, Py, Ps Ps

[52, 55] Py, Py, P Pg

[56, 63] Py Py

[64, 95] Py P;

[96, 103] NULL NULL

[104, 105] Pg, Py Py

[106, 107] Pg, Pyg Pio

[108, 109] Pg, P1; Py

[110, 111] Pg, P1q, P12 Py
[112,127] NULL NULL

is why we can turn the LPM problem into an equivalent point lo-
cation problem. Fig. 3 and Table 2 show all elementary intervals
and corresponding matching prefixes for routing table projection in
Fig. 2.

Based on this transformation, an elementary interval based
splitting algorithm for routing tables can be developed, which can
separate prefixes evenly into blocks without any TCAM holes (idle
entries). Intuitively, one dimensional partition problem based on
elementary intervals is often easier to handle than the original 32-
level separating problem, as we will see in the next subsection.

3.2. Top-down splitting algorithm

One of the key issues in power-efficient routing table lookup is
how to separate all routing prefixes into a set of TCAM blocks and
build a pre-classifier for these blocks. In this subsection, we detail
an elementary interval based top-down splitting algorithm, with
each split interval containing at most TBsize prefixes, where TBsize
is the TCAM block size (except possibly the last one subset).

The rationale behind our routing table partitioning algorithm
is simple: by transforming addresses into a set of elementary in-
tervals, we can simply generate index ranges for TCAM blocks by
merging neighboring elementary intervals recursively. More specif-
ically, we first select the leftmost elementary interval in the num-
ber line (not included in any existing index range) as the first in-
dex range. Then, this index range is expanded by moving its right
end point to another right-side projection endpoint, with exactly
one more elementary interval included or completely covered each
time, until the subset of prefixes included by the current index
range reaches the capacity limit of a TCAM block (i.e., one more
included elementary interval should cause block overflow). At the
same time, a corresponding TCAM block can be allocated for the
subset of prefixes that are included. For all included prefixes in
each TCAM block, they need to be stored in descending order of
their priorities. These two steps will be repeated until all elemen-
tary intervals are processed. It is easy to see that each gener-
ated index range is a combination of several consecutive and non-
overlapping smaller elementary intervals.

Take elementary intervals of Fig. 3 as an example to describe
the above merging method intuitively (assuming the TBsize = 4).
First, the left-most elementary interval [a, b] is selected, and the
best matching prefix P; is included by the initial index range. In

W. Li, D. Li and X. Liu et al./Computer Networks 164 (2019) 106898 5

Table 3
Index range table.

Index ranges

Included elementary intervals

TCAM block blocks

[0, 51] [0, 31], [32, 35], [36, 39], [40, 47], [48, 51] 1%t block: {Ps3, Ps, Py, P1}
[52, 105] [52, 55], [56, 63], [64, 95], [96, 103], [104, 105] 2 plock: {Pg, P, P7 ,P1}
[106, 127] [106, 107], [108, 109], [110, 111], [112, 127] 31 block: {P1g, P12, P11}
Pr P Ps Ps : P1 Ps P7 Py i(”w PuaPz - Algorithm 1: BuildPreClassifier()
a

Fig. 4. Routing table partition with a TCAM block size of 4.

order to accommodate more prefixes, the index range [a, b] then
moves its right end point from endpoint b to ¢, and so the index
range becomes [a, c]. At this point, two elementary intervals are
completely covered by the new index range containing two best
matching prefixes (i.e.,, P; and P3). Since the number of included
prefixes is still smaller than the block size, the current index range
continues to move its right end point to produce a larger new in-
dex range, which may cover more not-yet-included elementary in-
tervals. When the index range moves its right end point to end-
point f, the new index range [a, f] will include five elementary in-
tervals containing four unique best matching prefixes (i.e., P;, Py,
P3, Ps), reaching the capacity limit of a TCAM block. Thus, the first
index range expansion process stops at endpoint f, and the index
range [a, f] is generated with four best matching prefixes stored in
its corresponding TCAM block.

After that, a new index range expansion process repeats the
steps above by setting the index range to be the left-most not-yet-
included elementary interval, until all remaining elementary inter-
vals are processed. Table 3 and Fig. 4 show all index ranges and
the elementary intervals they include, as well as the correspond-
ing TCAM blocks.

As can be seen from Table 3, the routing table can be evenly
partitioned into three TCAM blocks, with each block except the
last one containing as many prefixes as a TCAM block can hold.
This fine characteristic derives from the simple one-dimensional
merging method which can include at most one prefix at a time,
rather than an exponential order of prefixes as in CoolCAMs us-
ing subtree-split algorithm. Essentially, our splitting algorithm is
derived from the global top-down partitioning method (i.e., rout-
ing table projecting), with more insights into the prefix relation-
ship. As described above, all address values in an elementary inter-
val share the same set of address prefixes covering each of them,
therefore, at most one prefix can be included by adding an ele-
mentary interval each time, achieving a more precise control over
the expansion.

It is not difficult to see that a prefix can be separated into mul-
tiple blocks, because it may span multiple index ranges (e.g., P,
in Table 3), and such duplicated prefixes may introduce additional
storage overhead. Fortunately, in real routing tables, the propor-
tion of such duplicated prefixes is almost negligible, which can be
verified from our following experimental results. Essentially, this
feature comes from a well-known observation about prefix length
distribution, that is, there are very few routes with prefixes longer
than 24-bit [36,47,66]. For ease of evaluation, we can define this
prefix replication factor as blocking replication, which can be ob-
tained by the following formula: (routing table size + #duplicated
rules)/routing table size. Thus, the blocking replication of our sam-
ple routing table is 13/12. More evaluation results for real rout-
ing tables can be seen in Section 5.3. The pseudo code for above
routing table splitting and pre-classifier construction algorithm is
shown in Fig. 5.

Input: Elementary intervals & matching prefixes
Output: Index table & partitioned routing tables
1: while (unused elementary intervals !=null)
2: covering range = the leftmost unused elementary interval
3: while(number of covering prefix < block size
and unused elementary intervals != null)
add leftmost unused elementary interval to covering range
endwhile
put covering prefixes in new TCAM block (descending order)
put covering range in pre-classifier/index table
endwhile

PN

Fig. 5. Elementary interval based routing table splitting algorithm.

Stage 1:
Pre-classification based on 2-level Pre-classifier

Stage 2:
Post-classification in selected block

Associated RAM
(Range-ID relations)

Index TCAM
(LCP prefixes)

TCAM Blocks
(Routing table prefixes)

Associated RAM
(Next hop)

Blocki#' | Next

Hop;

A

o ! ‘\1 e IfR>=A >=L, then return IDy,
. ,Bra,ngje,@?g!?tﬂe—{ e If A <L, then return ID;
(L] R ID Dy 1D e IfR <A, then return ID,

Fig. 6. The architecture of MEET-IP.

3.3. One-level pre-classifier based on encodings

A pre-classifier can now be constructed with the consecutive
and non-overlapping index ranges generated from the above split-
ting algorithm to quickly classify incoming IPs into TCAM blocks
for high-speed post-classification. For each incoming destination
address, a pre-classifier should be able to return an index ID that
explicitly indicates the right TCAM block to obtain the best match-
ing result. The key issue is how to perform a high-speed lookup in
the first pre-classification phase.

Based on the concept of Longest Common Prefix (LCP), a two-
level TCAM pre-classifier is proposed in MEET-IP as illustrated in
Fig. 6. In MEET-IP, each incoming address is presented to the in-
dex TCAM for retrieving the best matching LCP, followed by some
extra comparisons in RAM. According to the ID obtained from pre-
classification, a second TCAM lookup is performed on its corre-
sponding TCAM block, where the longest matching prefix can be
obtained with the next hop information in its associated RAM.
More details can refer to [56,60].

Although MEET-IP produces just one index for each TCAM block,
its complicated two-level pre-classifier may result in performance
degradation. Based on the observation that the number of gen-
erated index ranges is much less than routing table size, we can
simply encode each index range into an equivalent set of prefixes.
Thus, we introduce a one-level pre-classifier based on the follow-
ing described SplitCoding, which is a practical TCAM range encod-
ing scheme. Fig. 7 shows the architecture of SplitIP.

6 W. Li, D. Li and X. Liu et al./ Computer Networks 164 (2019) 106898

Stage 1:
Pre-classification based on 1-level Pre-classifier

Stage 2:
Post-classification in selected block

Associated RAM
(Block ID)

Index TCAM
(Range Encoding Prefixes)

TCAM Blocks
(Routing table prefixes)

Associated RAM
(Next hop)

Adi’es,s REP, 5 BlockD, | Block#| L[, . % hopi C'.i,xf*
: .

a=97=01100001
b=171=10101011
LCP,, = #kkoksox
m=127=01111111
LCPyy, = 01 1#5#%*
n =128 = 10000000
LCP,y, = 10%#k5ks

(c) Proposed SplitCoding:
{01100000 2 deny, 011***** > accept,
100***%* > geeept, 10100*** 2 accept, 101010** = accept}

Fig. 8. A sample of SplitCoding for 8-bit range R = [97, 171].

4. SplitCoding for fast pre-classification

In this section, we introduce a simple TCAM range encoding
scheme called SplitCoding, which is not only better in terms of
range expansion but also easier to understand and much more
practical to implement. Instead of adopting complex recursive al-
gorithms as in previous approaches, all encoded prefixes in Split-
Coding can be easily obtained in linear time by counting 0/1-bit
of the range endpoints. More background about internal, external
and optimal range encodings can refer to [31-35,53]. In addition,
we prove that the upper-bound on the TCAM worse-case range ex-
pansions in SplitlP is K(W—-log,K+1), better than K(W+1) in Cool-
CAMs, where K is the number of index ranges (i.e., #used TCAM
blocks) and W is the bit width of addresses in SplitIP. For the con-
venience of description, we use the 8-bit range Ry, = [97, 171] as
a discussion example in this section as shown in Fig. 8.

4.1. Notations

Definition 2. (Range, width, length): A range is a contiguous inter-
val of integers [a, b], where each integer is of W bits wide and its
two range endpoints satisfy a < b. For a range Ry, = [a, b], its range
length L = log,(b—a+ 1). For example, for an interval R; = [80,
1024] in IPv4 address space, we can say that Ry is a 32-bit range
of length 10.

Definition 3. (Longest Common Prefix: LCP): LCP,;, is the longest
prefix that covers the range R, = [a, b]. If prefixes are il-
lustrated in the binary trie, LCPy is the lowest common an-
cestor of a and b. As illustrate in Fig. 8, for the 8-bit range
Ram =197, 127]=[01100001, 01111111], its longest common prefix
LCPgm = Rpm = 011*****, where endpoint P is the leftmost value
of LCPyp,.

Definition 4. (Splitting endpoint): For rang Ry, = [a, b], there are
two splitting endpoints for Ry, (one if a = b), where the value of
these endpoints are the middle values of LCPg,. For the 8-bit range
Rgp = [97, 171]1=[01100001, 10101011], the two middle values of

LCP,, are 127 and 128, because LCPy,= ******** Thus, the splitting
endpoints for range Ry, are m and n, where m = 127 and n = 128.

Definition 5. (Extremal range, generalized extremal range): A W-
bit range Ry, = [q, b] is called extremal range if a = 0 or b = 2W—1.
More broadly, Ry, is called generalized extremal range if integer a is
the leftmost value of LCP,, or integer b is the rightmost value of
LCPgp,. For example, Ryq.1)=10, a—1] is an extremal range in Fig. 8,
while Rgm = [a, m] and Ry, = [n, b] are generalized extremal ranges,
because m and n are the rightmost and leftmost values for LCPgn,
and LCP,,, respectively.

4.2. Related encodings

Internal encoding: In internal encoding scheme, the W-bit range
can be completely divided into at most 2W-2 successive and con-
tiguous sub-ranges, where each sub-range can be represented as a
prefix with an action of Accept [53]. Take the 8-bit range Rym =[97,
127] shown in Fig. 8 as an example, it can be encoded into fol-
lowing five 8-bit prefixes: {0111****, 01101***, 011001**, 0110001*,
01100001} — Accept. A sample implementation of the internal en-
coding scheme can refer to the Fig. 2 shown in paper [59].

External encoding: By exploiting the characteristic of order of the
entries in TCAMs (i.e., output the first matching entry), the exter-
nal encoding scheme can reduce the worst-case number of en-
coded prefixes from 2W-2 to W [35]. For each range using exter-
nal encoding scheme, its complementary ranges are encoded into
prefixes with an action of Deny, following with an Accept prefix.
Then, it choose the better one compared with the internal encod-
ing scheme. Also take the range R;n shown in Fig. 8 as an ex-
ample, it can be encoded into two prefixes: 01100000 — Deny and
011***** — Accept, better than that in internal encoding scheme.

4.3. Related lemmas

Before describing the key steps of SplitCoding, we first give two
lemmas which have been stated and proved in previous paper [8].

Lemma 1. The smallest number of ternary entries that span range
[0, b] is equal to the number of 1-bits in (b+1). These entries can
be simply derived in linear time by respectively replacing each 1-bit
in (b+1) with 0-bit and padding all the following bits with *’. More
details can refer to[9].

Take the extremal range [0, 96] in Fig. 8 as example. With in-
ternal encoding, it can be encoded into minimally three prefixes,
as there are three 1-bits in 01100001, the binary representation
of 97, and the three encoded prefixes are 00****** 010***** and
01100000.

Lemma 2. For any a > 0, the smallest number of ternary entries that
span range [a, 2W—1] is equal to the number of 0-bits in (a—1). These
entries can be simply derived in linear time by respectively replacing
each 0-bit in (a—1) with 1-bit and padding all the following bits with
“’. More encoding details can refer to[9].

Take the extremal rangeR = [172, 28—1] in Fig. 8 as example.
Using internal encoding, it can be encoded into minimally three
prefixes, becasue there are three 0-bits in 10101011, the binary

representation of 171, and the three encoded prefixes are 171******
1011**** and 101011**.

4.4. Key encoding steps

We now introduce the three key steps of SplitCoding for the
general range R = [qa, b], where a < b. The encoding details for the
sample 8-bit range R = [a, b] = [97, 171] from Fig. 8 are illustrated
in Fig. 9. The pseudo code for SplitCoding is shown in Fig. 10.

W. Li, D. Li and X. Liu et al./Computer Networks 164 (2019) 106898 7

R=[a, b]=[97,171] = [01100001, 10101011]
(Step 1. Split R into two generalized extremal ranges)
(LCP,p, = ¥*****%% 5 Splitting endpoints: m = 127, n = 128)

Ram = [01100001, 01111111] R, = [10000000, 10101011]

(Step 2. Choose the better one between internal and external encodings)
(Count 0/1-bit for underlined bits of value a, a-1, b & b+1 based on lemmas)

external

|

| |
| |
la-1=01100000 a = 01100001 i
i l#O—bit: 5 l#l—bit: 1 !
| |
| |
| |
| |

|

— |

3 1
=

o |
&

=

=R

:|_

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

external}

b+1 = 10101100 b = 10101011 |

]
} internal

I

! I
| l#l—bit: 3 l‘*o'b't: 21
I

I

I

I

I

+LCPym +LCPyp |
#prefix=5 #prefix=2 #prefix=3 #prefix=3 |

I

I

,,,,,,,,,,,,,,,,,,,, [S o —
Choose external | #prefix = 2 Choose internal | #prefix = 3

a=01100001 b+1=10101100
(Step 3. Generate the final encoded prefixes of SplitCoding in linear time)
(Replace 0/1-bit for underlined bits and pad “*” for rest bits based on lemmas)
IReplace 1-bit with 0-bit !Replace 1-bit with 0-bit
R 2 R

|
01100000 > deny | 1100***** = accept|

| *okk
| 115k > accept} | 10100 - accept!
|

| 1101010** > acceth

(Five final encoded prefixes after merging as illustrated in Figure 8)

Fig. 9. Range encoding example using SplitCoding.

Algorithm 2: SplitCoding()

Input: Range R = [a, b],a<b

Output: Encoded prefixes for R

1: compute LCPy to generate splitting endpoints of R

2: split R into R, and R, from splitting endpoints

3: for left generalized extremal range R,

3.1: Excluding the non-don’t-care common bits in the LCPp

3.2: compute the number of 0-bits in a-1 (#0-bit)

3.3: compute the number of 1-bits in a (#1-bit)

3.4: if (#0-bit > #1-bit) {external encodings for R,based on Lemma 1}
3.5: else {internal encodings for R;based on Lemma 2}

4: for right generalized extremal range R,

4.1: Excluding the super-prefix from the LCPs,

4.2: compute the number of 1-bits in b+ (#1-bit)

4.3: compute the number of 0-bits in b (#0-bit)

4.4: if (#1-bit > #0-bit) {external encodings for R;based on Lemma 2}
4.5: else {internal encodings for R, based on Lemma 1}

5: Return encoded prefixes in steps 3 & 4

Fig. 10. The pseudo code of SplitCoding.

Step 1 If R is a generalized extremal range, skip to Step 2. Other-
wise, split R into two generalized extremal ranges.

Take the range R = [a, b] = [97, 171] as an example, we first
compute the LCP for R that is LCPy, = ******** Then, we generate
two splitting endpoints for R: m = 01111111 and n = 10000000. Fi-
nally, based on these two splitting endpoints, we can split R into
two sub-ranges that are Rqm and R,;, as shown in Fig. 8, where
each of the split sub-ranges is a generalized extremal range.

Step 2 For each split generalized extremal range, choose between
internal and external encoding by counting 0/1-bit of
range endpoints (excluding the non-don’t-care common
bits in its corresponding LCP).

Take the left generalized extremal rangeR,n = [97, 127] as an
example. We can first encode the external part of R;n under the
range of LCPgmn - that is Rpq.1) as shown in Fig. 8. Although the
range Rqm and Rp,.1) are not extremal ranges as described in above
Lemmas, it is easy to see that these Lemmas still hold for gen-
eralized extremal ranges by ignoring the common super-prefix bits
from its LCP. Due to relevance and space limitation, detailed proofs

will not be given in this paper. Thus, for the two generalized ex-
tremal ranges Rgm and Rp,.1), the smallest number of encoded pre-
fixes spanning these ranges can be obtained by simply counting
the 0/1-bit of their range endpoints, ignoring the first three com-
mon bits from LCPgy;,: the lower five bits in integer value (a—1) for
Ram based on Lemma 2 and a for Rya-1) based on Lemma 1. Since
Rgm can be encoded into 5 and 2 prefixes by using internal and
external encoding scheme, the external encoding scheme will be
used for Rgp.

Step 3 Generate the final encoded prefixes in linear time by flip-
ping each 1-bit (Lemma 1) or 0-bit (Lemma 2) of the
range endpoints - excluding the common super-prefix —
and padding the following bits with “*’.

After deciding on the encoding scheme for each generalized ex-
tremal range, we can then obtain the smallest number of prefixes
that span the range with the methods in Lemmas 1 or 2 where
applicable. Most importantly, these encoded prefixes can simply
be generated in linear time. For example, by using external encod-
ing scheme for the left generalized extremal rangeRqm = [97, 127],
we can first encode the external part of Rqyn under the range of
LCPqm which is Rpa-1) = [96, 96]. Based on Lemma 1, the smallest
number of encoded prefixes that span range Rpq.1) is equal to the
number of 1-bits in the lower five bits in integer value a that is
01100001. Thus, the single encoded prefix for R,,.1) can be gener-
ated by replacing the last 1-bit in a with 0-bit, that is 01100000.
Therefore, we can obtain two encoded prefixes for Ry, with exter-
nal encoding scheme as illustrated in Figs. 8 and 9.

4.5. Theoretical analysis of encoding complexity

Based on above descriptions of SplitCoding, any W-width range
R can be encoded in a nearly constant time. From Fig. 9 and 10, we
can see that in SplitCoding, all final encoded items of range R = |q,
b] can be obtained based on two endpoints of R: a and b. Thus,
from the memory access point of view, SplitCoding can finish the
coding for R in O(1) memory access, regardless of the range width
W. In contrast, optimal encoding adopts a dynamic-programming
algorithm presented in [43] to generate encoded items recursively,
where it needs to modify two candidate subsets in each recursive
step. Thus, it may consume up to O(W) memory accesses to encode
range R, much more than that in SplitCoding.

4.6. Worst-case range expansion for pre-classifier

We next give some refined theorems for SplitCoding about
upper-bound on range expansion. We then prove the worst-case
range expansion for pre-classifier in SplitIP by using SplitCoding.
Assume that the range R = [a, b] (a < b), where its width and
length are W and L, respectively.

Theorem 1. The range expansion g(R) of the extremal range R (i.e.,
a = 0 or b = 2W—1) satisfies the following upper-bound:

W+ 2 W+ 1
e® = | 5| =[F5—]
Proof. For the binary representation of b, it is not difficult to prove
that the number of 1-bit in b+1 is at most one more than that in b.
Based on Lemmas 1 and 2, we can see that the smallest number of
ternary entries that span [0, b] and [b+1, 2%—1] are equal to the
number of 1-bits in b+1 and the number of 0-bits in b, respec-
tively. Thus, the total number of encoded prefixes using internal
and external encoding scheme is at most W+2 (i.e.,, W+1 bits and
one external prefix). After choosing the better one, we can obtain
the above upper-bound. The proof is similar for the extremal range
[a, 2W—1].

8 W. Li, D. Li and X. Liu et al./ Computer Networks 164 (2019) 106898

Theorem 2. The range expansion g'(R) of the generalized extremal
range R satisfies the following upper-bound:

gm <[5]

Proof. Obviously, the generalized extremal range R can be treated
as an extremal range under the range of LCPg, where the sub-width
of LCPg is equal to L, which is the length of R. Based on the proof
of Theorem 1, we can easily prove the above upper-bound under
the range of LCPg.

Theorem 3. The range expansion f(R) of the general range R satisfies
the following upper-bound:

f(R)y< L+1

Proof. It is easy to prove that the L-length range R can be split into
two generalized extremal ranges, where their maximum sub-widths
are L and L—1 respectively. So:

f,(R)E{(L71)+1‘|+(L+ 1-|=L+l

2 2

Theorem 4. For K W-bit consecutive and nonoverlapping ranges
covering the whole range space, they can be encoded in at most
K(W-log,K+1) TCAM entries.

Proof. Assume the length of range R; is L; (i=12,...,K), we have:
W =2h 4ok 42k

Based on AM-GM inequality, we have:

WS K. &Ly + Loty

L] +L2 + - +L[(< K(W — lngK)

Thus, the total range expansion of K W-bit consecutive and

nonoverlapping ranges ft’oml(W) is:

fraa W) = FLW) + fLOW) +...+ fr(W)
= (L] +1)+(L2+1)+.,.+(LK+1)

<KW —log,K+1)

So, by using SplitCoding, K index ranges generated by SplitIP
can be encoded into at most K(W-log,K+1) TCAM entries, with
W-log,K+1 index entries for each TCAM block on average.

4.7. Route update

To support incremental updates, we need to make two changes
on above basic SplitIP: (1) to support incremental updates of in-
serting, the first change needed is to reserve a small fraction of
entries in each TCAM block during routing table partitioning; (2) to
ensure the correctness of lookup after deleting, the second change
needed is to reserve the prefixes completely covered by longer pre-
fixes, even though it may never be matched in this block due to
the LPM principle, such as P4 and Pg in Fig. 2. Next, we give more
details about incremental updates.

The incremental update for prefix P can be completed in two
steps. The first step is to determine which one or more index
ranges are overlapped with P. The second step is to active the
TCAM blocks indexed by these overlapped index ranges for update
operations. Recall that the index ranges in pre-classifier are dis-
joint and consecutive. Thus, when updating a prefix P, we can per-
form the following steps. First we use two endpoint of P to locate
two TCAM blocks (b, and b,, m < n) at which they are supposed

Table 4

Two core routing tables.
Table snapshot Location Date Table size
rcc01 (linx_1) London 1/1/2012 396376
oregon (linx_1) Oregon 17/12/2014 518231

to reside. Then we activate TCAM blocks from b, to b, to con-
duct update operations as follows. When inserting a new prefix P;,
some blocks may overflow after insertion, which should be han-
dled before the insert command is issued. To solve this problem,
we can move the leftmost or the rightmost prefixes to its neigh-
boring blocks recursively, until no block may overflow after the
insertion. For each modified block, we can recode its new index
range with SplitCoding, because it is not only fast but also database
independent. In contrast, the deletion of an old prefix requires only
a delete command issued for these activated blocks to remove it
out if it exists.

5. Experimental results

In this section, we present some experimental results of Spli-
tIP using 32-bit BGP routing tables. We start with an overview of
our experimental methodology. Since the primary metrics for eval-
uating the performance of power-efficient TCAM based solutions
are power reductions and memory consumptions, we then eval-
uate power reductions and memory consumptions of SplitIP sep-
arately. Finally, we evaluate the effectiveness of SplitCoding. All
experiments are run on a machine with AMD Radeon 5-2400G
CPU@3.6GHz and 8G DRAM.

5.1. Experimental methodology

We evaluate the performance of SplitIP using two representa-
tive routing tables obtained from RIPE NCC [40] and Oregon Route
Views Project [51] respectively, which are recently used for eval-
uation by SAIL [47] and Poptrie [14]. Details of these two routing
tables are listed in Table 4. Since the TCAM block size is an im-
portant parameter for evaluations, we show results with different
block sizes to demonstrate how the performance of our scheme is
affected by block size.

As mentioned in above sections, the main component of TCAM
power consumptions is proportional to the number of activated
TCAM blocks. For the convenient of evaluation, we employ a sim-
ple linear power model to estimate power reductions, though real
reductions may be slightly different. Suppose the routing table
contains N prefixes and the TCAM block size is B, the number of
activated TCAM blocks for default TCAM schemes without using
pre-classifier can be defined as X, where X=[N/B]. In order to for-
ward a destination address, the pre-classifier together with at most
one specific TCAM block are needed to be activated. Thus, assum-
ing that M pre-classifier entries are formed, at most Y = [M/B] +1
TCAM blocks are activated for each routing lookup. Therefore, the
percentage of power reduction with SplitIP is (X—Y)/X. We use these
definitions to evaluate power reductions of SplitIP.

Note that the primary objective of our work is to achieve power
reductions without sacrificing TCAM consumption. There are two
reasons for extra TCAM overhead: additional memory for building
pre-classifier and multiple entries for each duplicated prefix. Sup-
pose M pre-classifier entries are generated and an amount of Q
prefixes are stored in TCAM (include original prefixes and dupli-
cated prefixes), we can then calculate the ratio of storage overhead
as (M+Q)/N and the ratio of blocking replication as Q/N. Besides, the
pre-classifier storage overhead can be obtained by the following for-
mula: (M+N)/N. We use these notations and definitions to evaluate
memory consumptions of SplitIP.

W. Li, D. Li and X. Liu et al./Computer Networks 164 (2019) 106898

1000 10000

sooeflbn.

98 e S
.

96 ' 3
94 @
92 f
90

R| ss

= oo SpitlP

S|l 86 P

2 «. - MEET-IP

g & CoolCAM: bt

g 52 00l s(subtree)

“ <2~ CoolCAMs(post-order)

[}

B3

o

o

Block size

(a) rcco01

100
98
96
94
92
90

)

xX|| 88

= e e SplitlP

g 86 i

2 oo MEET-IP

g 84 CoolCAMs(subtree)
00l s(subtree

3| e

= <+ 2~ CoolCAMs(post-order)

5}

B3

o

a

1000 10000

Block size

(b) oregon

Fig. 11. The power reductions of SplitIP.

5.2. Power reduction

The reductions in power consumption by using SplitlP are
shown in Fig. 11, where x-axis represents block size and y-axis
shows the percentage of power reduction. As shown in Fig. 11(a)
and (b), SplitIP achieves huge power reductions similar to MEET-IP,
ranging from 93.93% to 99.21%, with an average power reduction of
97.41%, better than that of 92.56% and 96.28% in CoolCAMs using
two different splitting methods. Additionally, SplitIP is more suit-
able for incremental updates than CoolCAMs, because the merged
intervals are consecutive in SplitIP, while those merged intervals in
CoolCAMs are discrete. Fig. 11 also shows that, with the increase of
block size, the power reductions show a trend from rise to decline,
finally reaching the same value for different schemes. The rising
trend in the first stage can be explained by previous definitions of
power reduction, which is defined by (X-Y)/X, where X = [N/B]
and Y = [P/B] + 1. With the increase of block size, [P/B] will be
a fixed value (i.e., 1) for different schemes (block size larger than
the number of pre-classifier entries), leading same power reduc-
tions for different schemes.

5.3. Storage overhead

The storage overheads by using SplitIP are shown in Fig. 12,
where x-axis represents block size and y-axis shows the ratio of
storage overhead. We can see from Fig. 12(a) and (b) that SplitIP
achieves huge power reductions with negligible storage overhead
as MEET-IP, ranges from 1.001 to 1.081, with an average storage
overhead of 1.021, better than that of 1.31 and 1.028 in CoolCAMs
using two different splitting methods. That is to say, only 2.1% ex-
tra TCAM overhead is needed for SplitIP. Another conclusion can
be drawn from Fig. 12(a) and (b): storage overhead is declined
with the increase of block size. To gain more insights about stor-
age overhead in SplitIP, we next give more storage overhead de-
tails. This improvement, combined with the result in Fig. 11, justi-
fies our claim that a careful combination of algorithmic approaches
and block-based TCAM designs can achieve significant power re-
ductions and avoid severe TCAM storage waste at the same time.

<o SplitlP

- # -« MEET-IP

CoolCAMs(subtree)

«++ =+ CoolCAMs(post-order)

e

Storage overhead

1000

...... L EErt e TR —

10000

Block size

(a) rcc01

cebee

SplitiP

codmes

MEET-IP

CoolCAMs(subtree)

CoolCAMs(post-order)

Storage overhead

1000

ST "
ST veveveiifoveveelf--:

10000

Block size

(b) oregon

Fig. 12. The storage overhead of SplitIP.

«« <« pre-classifier(Split|P)

< %« - pre-classifie((MEET-IP)

blocking replication(SplitlP)

1.04

++++ blocking replication(MEET-IP)

Overhead details

Block size

(a) rcco1

« =« -« pre-classifier(SplitlP)

< %« - pre-classifier(MEET-IP)

blocking replication(SplitiP)

«++ =+« blocking replication(MEET-IP)

Overhead details

1000

; [ETESXSY . TOPONN 4 ey

Block size

(b) oregon

Fig. 13. More details about storage overhead of SplitIP.

As mentioned in above sections, two

reasons may lead to ex-

tra storage overhead: pre-classifier and duplicated prefixes. Thus,
to gain more insights about storage overhead of SplitIP and MEET-

IP, we look into some details for these

two reasons. The results

are shown in Fig. 13, where x-axis represents block size and y-axis

shows the ratio of storage overhead. We

can see from Fig. 13 that

SplitlP and MEET-IP have the same ratio of duplicated prefixes, but
with different ratio of pre-classifier storage overhead: 1.017 and

1.003 on average. Thus, compared to MEE

T-IP, SplitIP can avoid ad-

ditional endpoint comparisons by only introducing 1.4% additional

pre-classifier entries.

10 W. Li, D. Li and X. Liu et al./ Computer Networks 164 (2019) 106898

M Internal m SplitCoding

123456 7 8 91011121314151617 1819 20 21 22 23 24 2526 27 28 29 30
Range Expansion Ratio

Frequency(%)

IS

[N}

Fig. 14. Range expansion distribution over all possible ranges for width W = 16.

" M Internal External SplitCoding Optimal
13
12
11
£10
&
c 9
2
e 8
s
g7
]
% 6
=
g s
o
& 4
2
z 3
: |I |
1
‘mul
1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16
Width: W

Fig. 15. Average range expansion ratio over all possibile ranges for diffierent width.

As an extended work of MEET-IP, another main contribution of
SplitIP is the proposed novel encoding scheme called SplitCoding,
as well as some new theorems and proofs. Thus, we next give more
evaluations to verify the effectiveness and prove the correctness of
SplitCoding.

5.4. Effectiveness of SplitCoding

We evaluate the performance of SplitCoding with internal [53],
external [32] and optimal [33] encoding scheme. Given the width
W, we generate all possible ranges with the same probability as
follows: [0, 0], [0, 1], [0, 2]...., [0, 2W—1], [1, 1], [1, 2], [1, 3]...,
[2W-2, 2W_1], [2W—1, 2" —1]. All source codes are publicly avail-
able in [19].

Fig. 14 shows the range expansion distribution over all possi-
ble ranges with width W = 16. The worst-case expansion of in-
ternal encoding approach is 2W-2 = 30 (with negligible prob-
ability), while it is W = 16 in SplitCoding. Clearly, more ranges
are encoded with fewer prefixes in SplitCoding. Fig. 15 presents
the average range expansion ratio over all possible ranges for dif-
ferent width. SplitCoding achieves an average reduction of 20.85%
and 7.95% in encoded TCAM entries compared to internal and ex-
ternal approach. Although optimal encoding achieves an average
reduction of 8% in encoded TCAM entries compared to SplitCod-
ing, it consumes more than 10 times on average to generate en-
coded items as illustrated in Fig. 16. Besides, regardless of the
range width W, Fig. 16 shows that SplitCoding can always finish
encoding in a nearly constant time. In contrast, the average encod-
ing time of optimal encoding grows linearly with the range width
W, which is consistent with our theoretical analysis of encoding

- ¢ -splitcoding -4 -Optimal
25 e d
- ‘*"
? 7‘*"
2, ot
g L
5 e
B 15 e
2 P
S -
§’ *
g 1
S
<
0.5
¢------ *------ *------ ------ +------ *------ *------ -+
0
9 10 11 12 13 14 15 16
Width: W

Fig. 16. Average range encoding time of SplitCoding compared to optimal encoding
for all possibile ranges with diffierent width.

2 .
5 X T
R
Ay
2 LR
0 K
L T
-X
15
|41
-
.
10 s 5N
(= T
- -
NI (] .
-48 --pa
5 | E U . --4
I I |.‘ ‘f I
-1
. D ol oD Sk -8
256 512 1k 2k K 8k 16k 32k 64k
actual; s \W=16 s \W=20 W=24 W=28 m—\\=32
theoretical: - - - W=16 - -4 - W=20 W=24 W=28 --%- W=32

Fig. 17. Average range expansion ratio for different size of elementary intervals
with different range width W.

complexity given in Section 4.4. Thus, SplitCoding achieves similar
improvement in performance of compression as optimal encoding,
but much faster and simpler than optimal encoding.

Fig. 17 shows the evaluation between the theoretical upper
bound and the actual expansion ratio for randomly generated el-
ementary intervals. As the size of elementary intervals increases
from 256 to 64k and W varies from 16 to 32, the expansion de-
creases almost linearly at a fixed slope, which indicates that there
is a good deal of room for the expansion reduction as well as
shows the correctness of the new theoretical upper bound.

6. Conclusion

In this paper, we propose SplitIP, a memory and power efficient
2-stage scheme for TCAM based IP routing table lookup. In order
to build a more effective pre-classifier, we introduce a top-down
framework which has a better global view on relationships among
address prefixes. After the projecting of address prefixes, we pro-
pose a global splitting algorithm for projected elementary inter-
vals, which can separate prefixes evenly into blocks without any
TCAM holes. Besides, for the purpose of fast pre-classification, we
introduce a one-level pre-classifier based on database independent
TCAM range encodings, where each index range can be firstly split
into two sub-ranges and then adopt different encoding techniques
adaptively to reduce the final encoded TCAM entries. Experimental
results show that our design achieves more than 97% power re-
duction with an extra TCAM storage overhead of less than 3% on
average.

W. Li, D. Li and X. Liu et al./ Computer Networks 164 (2019) 106898 1

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgment

We gratefully acknowledge the detailed comments and con-
structive suggestions made by editors and anonymous reviewers
for our original submission. We appreciate the help from Ori Rot-
tenstreich in terms of the design of SplitCoding. Besides, we also
want to appreciate the friendly advices from Gaogang Xie and Tong
Yang in this work. Hui Li and Dagang Li are corresponding authors
of this paper. This work is supported in part by the PCL Future
Regional Network Facilities for Large-scale Experiments and Ap-
plications (PCL2018KP001), Shenzhen Peacock Innovation Program
(KQJSCX20180323174744219), Key Areas R&D Program of Guang-
dong (2019B010137001), National Keystone R&D Program of China
(2017YFB0803204), NSFC (61671001) and Shenzhen Research Pro-
grams (JCYJ20170306092030521).

References

[1] A. Bremler-Barr, D. Hendler, Space-efficient TCAM-based classification using
gray coding, in: Proceedings of the IEEE INFOCOM, 2007.

[2] AJ. McAuley, P. Francis, Fast routing table lookup using CAMs, in: Proceedings
of the IEEE INFOCOM, 1993.

[3] AX. Liu, G. Gouda, Complete redundancy removal for packet classifiers in
TCAMs, IEEE Trans. Parallel Distrib. Syst. 20 (4) (2010) 424-437.

[4] AX. Liu, CR. Meiners, E. Torng, Packet classification using binary content ad-
dressable memory, in: Proceedings of the IEEE INFOCOM, 2014.

[5] AX. Liu, C.R. Meiners, E. Torng, TCAM Razor: A systematic approach towards
minimizing packet classifiers in TCAMs, IEEE/ACM Trans. Netw. 18 (2) (2010)
490-500.

[6] AX. Liu, CR. Meiners, Y. Zhou, All-match based complete redundancy removal
for packet classifiers in TCAMs, in: Proceedings of the IEEE INFOCOM, 2008.

[7] B. Lampson, V. Srinivasan, G. Varghese, IP lookups using multiway and multi-
column search, IEEE/ACM Trans. Netw. 7 (3) (1999) 324-334.

[8] B. Schieber, D. Geist, A. Zaks, Computing the minimum DNF representation
of Boolean functions defined by intervals, Discrete Applied Mathematics 149
(1-3) (2005) 154-173.

[9] B. Vamanan, T. Vijaykumar, TreeCAM: decoupling updates and lookups in
packet classification, in: Proceedings of the ACM CoNEXT, 2011.

[10] C.R. Meiners, A.X. Liu, E. Torng, Hardware Based Packet Classification for High
Speed Internet Routers, Springer Science & Business Media, 2010.

[11] D. Sarang, K. Praveen, D. Taylor, Longest prefix matching using bloom filters,
in: Proceedings of the ACM SIGCOMM, 2003.

[12] D. Shah, P. Gupta, Fast incremental updates on Ternary-CAMs for routing
lookups and packet classification, in: Proceedings of the IEEE Hot Intercon-
nects, 2000.

[13] E Zane, G. Narlikar, A. Basu, CoolCAMs: power-efficient TCAMs for forwarding
engines, in: Proceedings of the IEEE INFOCOM, 2003.

[14] H. Asai, Y. Ohara, Poptrie: a compressed trie with population count for fast
and scalable software IP routing table lookup, in: Proceedings of the ACM SIG-
COMM, 2015.

[15] H. Che, Z. Wang, K. Zheng, B. Liu, DRES: dynamic range encoding scheme for
TCAM coprocessors, IEEE Trans. Comput. 57 (7) (2008) 902-915.

[16] H.J. Chao, B. Liu, High Performance Switches and Routers, John Wiley & Sons,
2007.

[17] H. Lim, K. Lim, N. Lee, K. Park, On adding bloom filters to longest prefix match-
ing algorithms, IEEE Trans. Comput. 63 (2) (2014) 411-423.

[18] H. Liu, Efficient mapping of range classifier into ternary-CAM, in: Proceedings
of the IEEE Hot Interconnects, 2002.

[19] http://www.wenjunli.com/SplitCoding.

[20] K. Huang, G. Xie, Y. Li, AX. Liu, Offset addressing approach to memory-effi-
cient IP address Lookup, in: Proceedings of the IEEE INFOCOM Mini-Confer-
ence, 2011.

[21] K. Lakshminarayanan, A. Rangarajan, S. Venkatachary, Algorithms for advanced
packet classification with ternary CAMs, in: Proceedings of the ACM SIGCOMM,
2005.

[22] K. Zheng, C. Hu, H. Lu, B. Liu, A TCAM-based distributed parallel IP lookup
scheme and performance analysis, IEEE/ACM Trans. Netw. 14 (4) (2006)
863-875.

[23] K. Zheng, C. Hu, H. Lu, B. Liu, An ultra high throughput and power efficient
TCAM-based IP lookup engine, in: Proceedings of the IEEE INFOCOM, 2004.

[24] L. Luo, G. Xie, S. Uhlig, L. Mathy, K. Salamatian, Y. Xie, Longest prefix matching
using bloom filters, in: Proceedings of the ACM CoNEXT, 2012.

[25] L. Luo, G. Xie, Y. Xie, L. Mathy, K. Salamatian, A Hybrid Hardware Architecture
for High-speed IP Lookups and Fast Route Updates, IEEE/ACM Trans. Netw. 22
(3) (2014) 957-969.

[26] L. Luo, G. Xie, Y. Xie, L. Mathy, K. Salamatian, A hybrid IP lookup architecture
with fast updates, in: Proceedings of the IEEE INFOCOM, 2012.

[27] M. Bando, Y. Lin, H. Chao, FlashTrie: beyond 100-Gb/s IP route lookup us-
ing hash-based prefix-compressed trie, IEEE/ACM Trans. Netw. 20 (4) (2012)
1262-1275.

[28] M. Degermark, A. Brodnik, S. Carlsson, S. Pink, Small forwarding tables for fast
routing lookups, in: Proceedings of the ACM SIGCOMM, 1997.

[29] M. Waldvogel, G. Varghese,]. Turner, B. Plattner, Scalable high speed IP routing
lookups, in: Proceedings of the ACM SIGCOMM, 1997.

[30] Micron Technology Inc, Harmony TCAM 1Mb and 2Mb, Datasheet, 2003.

[31] O. Rottenstreich, I. Keslassy, On the code length of TCAM coding schemes, in:
Proceedings of the IEEE ISIT, 2010.

[32] O. Rottenstreich, I. Keslassy, Worst-case TCAM rule expansion, in: Proceedings
of the IEEE INFOCOM Mini-Conference, 2010.

[33] O. Rottenstreich, I. Keslassy, A. Hassidim, H. Kaplan, E. Porat, On finding an
optimal TCAM encoding scheme for packet classification, in: Proceedings of
the IEEE INFOCOM, 2013.

[34] O. Rottenstreich, I. Keslassy, A. Hassidim, H. Kaplan, E. Porat, Optimal In/Out
TCAM encodings of ranges, IEEE/ACM Trans. Netw. 24 (1) (2016) 555-568.

[35] O. Rottenstreich, R. Cohen, D. Raz, I. Keslassy, Exact worst-case TCAM rule ex-
pansion, [EEE Trans. Comput. 62 (6) (2013) 1127-1140.

[36] P. Gupta, S. Lin, N. McKeown, Routing lookups in hardware at memory access
speeds, in: Proceedings of the IEEE INFOCOM, 1998.

[37] P. He, W. Zhang, H. Guan, K. Salamatian, G. Xie, Partial order theory for fast
TCAM updates, IEEE/ACM Trans. Netw. 26 (1) (2018) 217-230.

[38] P. Rina, S. Samar, Reducing TCAM power consumption and increasing through-
put, in: Proceedings of the IEEE Hot Interconnects, 2002.

[39] R. Miguel, B. Ernst, D. Walid, Survey and taxonomy of IP address lookup algo-
rithms, IEEE Netw. 15 (2) (2001) 8-23.

[40] RIPE network coordination centre [on line]. Available: http://www.ripe.net.

[41] S. Han, K. Jang, K. Park, S. Moon, PacketShader: a GPU-accelerated software
router, in: Proceedings of the ACM SIGCOMM, 2010.

[42] S. Nilsson, G. Karlsson, IP-address lookup using LC-tries, IEEE]. Sel. Areas Com-
mun. 17 (6) (1999) 1083-1092.

[43] S. Suri, T. Sandholm, P. Warkhede, Compressing two-dimensional routing ta-
bles, Algorithmica 35 (4) (2003) 287-300.

[44] T. Yang, AX. Liu, Y. Shen, Q. Fu, D. Li, X. Li, Fast openflow table Lookup with
fast update, in: Proceedings of the IEEE INFOCOM, 2018.

[45] T. Yang, B. Yuan, S. Zhang, T. Zhang, R. Duan, Y. Wang, B. Liu, Approaching
optimal compression with fast update for large scale routing tables, in: Pro-
ceedings of the IEEE/ACM IWQoS, 2012.

[46] T. Yang, G. Xie, AX. Liu, Q. Fu, Y. Li, X. Li, L. Mathy, Constant IP lookup with
FIB explosion, IEEE/ACM Trans. Netw. 26 (4) (2018) 1821-1836.

[47] T. Yang, G. Xie, Y. Li, Q. Fu, AX. Liu, Q. Li, L. Mathy, Guarantee IP lookup
performance with FIB explosion, in: Proceedings of the ACM SIGCOMM,
2014.

[48] T. Yang, R. Duan, J. Lu, S. Zhang, H. Dai, B. Liu, CLUE: achieving fast update
over compressed table for parallel lookup with reduced dynamic redundancy,
in: Proceedings of the IEEE ICDCS, 2012.

[49] T. Yang, T. Zhang, S. Zhang, B. Liu, Constructing optimal non-overlap routing
tables, in: Proceedings of the IEEE ICC, 2012.

[50] T. Yang, Z. Mi, R. Duan, X. Guo,]J. Lu, S. Zhang, X. Sun, B. Liu, An ultra-fast
universal incremental update algorithm for Trie-based routing lookup, in: Pro-
ceedings of the IEEE ICNP, 2012.

[51] University of Oregon route views project [on line]. Available: http://www.
routeviews.org.

[52] V. Srinivasan, G. Varghese, Faster IP lookups using controlled prefix expansion,
ACM SIGMETRICS Perform. Eval. Rev. 26 (1) (1998) 1-10.

[53] V. Srinivasan, G. Varghese, S. Suri, M. Waldvogel, Fast and Scalable Layer Four
Switching, in: Proceedings of the ACM SIGCOMM, 1998.

[54] W. Eatherton, G. Varghese, Z. Dittia, Tree bitmap: Hardware/software IP
lookups with incremental updates, ACM SIGCOMM Comput. Commun. Rev. 34
(2) (2004) 97-122.

[55] W. Li, X. Li, HybridCuts: a scheme combining decomposition and cutting for
packet classification, in: Proceedings of the IEEE Hot Interconnects, 2013.

[56] W. Li, X. Li, H. Li, MEET-IP: memory and energy efficient TCAM-based IP
lookup, in: Proceedings of the International Conference on Computer Commu-
nications and Networks (ICCCN), 2017.

[57] W. Li, X. Li, H. Li, G. Xie, CutSplit: a decision-tree combining cutting and split-
ting for scalable packet classification, in: Proceedings of the IEEE INFOCOM,
2018.

[58] W. Li, X. Liu, W. Le, H. Li, H. Zhang, A practical range encoding scheme for
TCAM:s, in: Proceedings of the ACM SIGCOMM Posters and Demos, 2019.

[59] X. Li, Y. Lin, W. Li, GreenTCAM: a memory- and energy-efficient TCAM-based
packet classification, in: Proceedings of the International Conference on Com-
puting, Networking and Communications (ICNC), 2016.

[60] Y.K. Chang, A 2-level TCAM architecture for ranges, IEEE Trans. Comput. 55 (12)
(2006) 1614-1629.

[61] Y.K. Chang, Power-efficient TCAM partitioning for IP lookups with incremental
updates, in: Proceedings of the International Conference on Information Net-
working (ICOIN), 2005.

[62] Y.K. Chang, C.I. Lee, C.C. Su, Multi-field range encoding for packet classification
in TCAM, in: Proceedings of the IEEE INFOCOM, 2011.

http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0001
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0001
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0001
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0003
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0003
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0003
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0004
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0004
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0004
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0005
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0005
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0005
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0005
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0006
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0006
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0006
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0006
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0007
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0007
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0007
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0007
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0008
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0008
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0008
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0008
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0009
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0009
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0009
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0009
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0010
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0010
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0010
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0011
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0011
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0011
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0011
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0012
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0012
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0012
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0012
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0013
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0013
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0013
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0014
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0014
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0014
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0014
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0015
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0015
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0015
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0016
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0016
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0016
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0016
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0016
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0017
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0017
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0017
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0018
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0018
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0018
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0018
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0018
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0019
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0019
http://www.wenjunli.com/SplitCoding
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0021
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0021
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0021
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0021
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0021
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0022
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0022
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0022
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0022
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0023
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0023
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0023
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0023
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0023
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0024
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0024
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0024
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0024
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0024
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0025
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0025
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0025
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0025
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0025
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0025
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0025
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0026
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0026
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0026
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0026
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0026
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0026
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0027
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0027
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0027
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0027
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0027
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0027
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0028
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0028
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0028
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0028
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0029
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0029
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0029
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0029
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0029
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0030
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0030
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0030
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0030
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0030
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0031
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0031
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0031
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0032
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0032
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0032
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0033
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0033
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0033
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0033
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0033
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0033
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0034
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0034
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0034
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0034
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0034
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0034
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0035
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0035
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0035
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0035
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0035
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0036
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0036
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0036
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0036
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0037
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0037
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0037
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0037
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0037
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0037
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0038
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0038
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0038
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0039
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0039
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0039
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0039
http://www.ripe.net
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0040
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0040
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0040
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0040
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0040
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0041
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0041
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0041
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0043
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0043
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0043
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0043
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0044
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0044
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0044
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0044
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0044
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0044
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0044
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0045
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0045
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0045
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0045
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0045
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0045
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0045
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0045
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0046
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0046
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0046
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0046
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0046
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0046
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0046
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0046
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0047
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0047
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0047
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0047
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0047
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0047
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0047
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0047
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0048
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0048
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0048
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0048
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0048
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0048
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0048
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0049
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0049
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0049
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0049
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0049
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0050
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0050
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0050
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0050
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0050
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0050
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0050
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0050
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0050
http://www.routeviews.org
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0051
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0051
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0051
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0052
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0052
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0052
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0052
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0052
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0053
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0053
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0053
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0053
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0054
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0054
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0054
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0055
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0055
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0055
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0055
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0056
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0056
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0056
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0056
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0056
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0057
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0057
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0057
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0057
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0057
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0057
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0058
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0058
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0058
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0058
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0059
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0059
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0060
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0060
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0061
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0061
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0061
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0061

12 W. Li, D. Li and X. Liu et al./ Computer Networks 164 (2019) 106898

i

[63] Y.K. Chang, C.C. Su, Y.C. Lin, S.Y. Hsieh, Efficient gray-code-based range encod-
ing schemes for packet classification in TCAM, IEEE/ACM Trans. Netw. 21 (4)
(2013) 1201-1214.

[64] Y. Li, D. Zhang, A.X. Liu,]. Zheng, GAMT: a fast and scalable IP lookup engine
for GPU-based software routers, in: Proceedings of the ACM/IEEE ANCS, 2013.

[65] Y. Ma, S. Banerjee, A smart pre-classifier to reduce power consumption of
TCAMs for multi-dimensional packet classification, in: Proceedings of the ACM
SIGCOMM, 2012.

[66] Z. Marko, R. Luigi, M. Miljenko, DXR: towards a billion routing lookups per sec-
ond in software, ACM SIGCOMM Comput. Commun. Rev. 42 (5) (2012) 29-36.

Wenjun Li, Wenjun Li received his B.Sc. from University
of Electronic Science and Technology of China, in 2011,
and M.Sc. from Peking University, in 2014. From 2014
to 2015, he worked as a researcher in network research
department, Huawei Technologies Co. Ltd. Now, he is a
Ph.D. candidate in School of Electronics Engineering and
Computer Science, Peking University. His research inter-
est includes computer network architecture and high-
performance network device.

Dagang Li received his Bachelor from Huazhong Univer-
sity of Science and Technology, Wuhan, China in 1998 and
Ph.D. from Katholieke Universiteit Leuven (University of
Leuven), Leuven, Belgium in 2010. He is currently an As-
sistant Professor with Peking University Shenzhen Gradu-
ate School. His research areas are data center networking
and storage infrastructure, and big data processing sys-
tems.

Xinwei Liu received her B.Sc. from Huazhong Univer-
sity of Science and Technology in 2017. Now she is a
graduate student in School of Electronics and Computer
Engineering, Peking University. Her research interest in-
cludes computer network architecture and Software De-
fined Networking.

Ting Huang received her B.Sc. from Sun Yat-sen Univer-
sity of Data and Computer Science in 2017. Now she is a
graduate student in School of Electronics and Computer
Engineering, Peking University. Her research interest in-
cludes computer network architecture and Software De-
fined Networking.

Xianfeng Li received his B.Sc. from School of Computer
and Control Engineering, Beijing Institute of Technology,
in 1995, and Ph.D. degree in computer science from the
National University of Singapore, in 2005. Now, he is as-
sociate professor in School of Electronic and Computer
Engineering, Peking University. His research interest in-
cludes Software Defined Networking, network security
and Internet of Things.

Wenxia Le is an enterprise network engineer and a sales
manager in Network Energy Department, Huawei Tech-
nologies Co., Ltd. Her research interest includes energy ef-
ficient data center networking, low power devices in data
communication network and Network Function Virtual-
ization.

Hui Li received the B.Eng. and M.S. degrees from Ts-
inghua University, Beijing, China, in 1986 and 1989 re-
spectively, and Ph.D. degree from The Chinese University
of Hong Kong in 2000. He is now with the Shenzhen
Key Lab of Information Theory & Future Network Archi-
tecture, Future Network PKU Lab of National Major Re-
search Infrastructure, Shenzhen Engineering Lab of Con-
verged Networking Technology, Huawei & PKU Jointly En-
gineering Lab of Future Network Based on SDN and the
PKU Institute of Big Data Technology, Shenzhen Graduate
School, Peking University. His research interests include
distributed storage systems, network coding, large-scale
switching and routing.

http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0062
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0062
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0062
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0062
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0062
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0063
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0063
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0063
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0063
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0063
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0064
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0064
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0064
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0065
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0065
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0065
http://refhub.elsevier.com/S1389-1286(18)31192-7/sbref0065

	A power-saving pre-classifier for TCAM-based IP lookup
	1 Introduction
	2 Related work and challenges
	2.1 2-stage Power-efficient TCAMs
	2.2 Challenges and motivation

	3 SplitIP: a 2-stage top-down framework
	3.1 LPM Problem point location problem
	3.2 Top-down splitting algorithm
	3.3 One-level pre-classifier based on encodings

	4 SplitCoding for fast pre-classification
	4.1 Notations
	4.2 Related encodings
	4.3 Related lemmas
	4.4 Key encoding steps
	4.5 Theoretical analysis of encoding complexity
	4.6 Worst-case range expansion for pre-classifier
	4.7 Route update

	5 Experimental results
	5.1 Experimental methodology
	5.2 Power reduction
	5.3 Storage overhead
	5.4 Effectiveness of SplitCoding

	6 Conclusion
	Declaration of Competing Interest
	Acknowledgment
	References

